4.2.3直线与圆的方程的应用A级基础巩固一、选择题1.已知圆x2+y2-4x+6y=0和圆x2+y2-6x=0交于A、B两点,则AB的垂直平分线方程是()A.x+y+3=0B.2x-y-5=0C.3x-y-9=0D.4x-3y+7=0解析:所求直线实质是两圆心连线所在直线,即3x-y-9=0.答案:C2.半径为5且与圆x2+y2-6x+8y=0相切于原点的圆的方程为()A.x2+y2-6x-8y=0B.x2+y2+6x-8y=0C.x2+y2+6x+8y=0D.x2+y2-6x-8y=0或x2+y2-6x+8y=0解析:已知圆的圆心为(3,-4),半径为5,所求圆的半径也为5,由两圆相切于原点,知所求圆的圆心与已知圆的圆心关于原点对称,即为(-3,4).答案:B3.两圆x2+y2-6x+16y-48=0与x2+y2+4x-8y-44=0的公切线条数为()A.4条B.3条C.2条D.1条解析:⊙O1为(x-3)2+(y+8)2=121,O1(3,-8),r=11,⊙O2为(x+2)2+(y-4)2=64,O2(-2,4),R=8,所以|O1O2|==13,所以r-R<|O1O2|