专题08三角形1.【2017课标1,文11】△ABC的内角A、B、C的对边分别为a、b、c.已知,a=2,c=,则C=A.B.C.D.【答案】B【考点】解三角形【名师点睛】在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,或是两个定理都要用,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.2.【2016高考新课标1文数】△ABC的内角A、B、C的对边分别为a、b、c.已知,,,则b=()(A)(B)(C)2(D)3【答案】D【解析】试题分析:由余弦定理得,解得(舍去),故选D.考点:余弦定理【名师点睛】本题属于基础题,考查内容单一,根据余弦定理整理出关于b的一元二次方程,再通过解方程求b.运算失误是基础题失分的主要原因,请考生切记!3.【2015高考广东,文5】设的内角,,的对边分别为,,.若,,,且,则()A.B.C.D.【答案】B【考点定位】余弦定理.【名师点晴】本题主要考查的是余弦定理,属于容易题.解题时要抓住关键条件“”,否则很容易出现错误.本题也可以用正弦定理解,但用正弦定理求角时要注意检验有两角的情况,否则很容易出现错误.解本题需要掌握的知识点是余弦定理,即.4.2016高考新课标Ⅲ文数]在中,,边上的高等于,则()(A)(B)(C)(D)【答案】D【解析】试题分析:设边上的高线为,则,所以.由正弦定理,知,即,解得,故选D.考点:正弦定理.【方法点拨】在平面几何图形中求相关的几何量时,需寻找各个三角形之间的联系,交叉使用公共条件,常常将所涉及到已知几何量与所求几何集中到某一个三角形,然后选用正弦定理与余弦定理求解.5.【2016高考山东文数】中,角A,B,C的对边分别是a,b,c,已知,则A=()(A)(B)(C)(D)【答案】C【解析】试题分析:因为所以由余弦定理得:,又因为,所以,因为,所以,因为,所以,故选C.考点:余弦定理【名师点睛】本题主要考查余弦定理的应用、三角函数的同角公式及诱导公式,是高考常考知识内容.本题难度较小,解答此类问题,注重边角的相互转换是关键,本题能较好的考查考生分析问题解决问题的能力、基本计算能力等.6.【2014年.浙江卷.文10】如图,某人在垂直于水平地面的墙面前的点处进行射击训练,已知点到墙面的距离为,某目标点沿墙面上的射线移动,此人为了准确瞄准目标点,需计算由点观察点的仰角的大小(仰角为直线与平面所成的角),若,,,则的最大值是()A.B.C.D.【答案】D在中,,在中由勾股定理得,整理得,令,当时,所以的最大值为,即的最大值是考点:三角函数的定义,函数的最值,难度中等.【名师点睛】本题主要考查了解直角三角形的有关问题,根据所给条件构造直角三角形,运用勾股定理求解直角边长,然后运用导数有关性质解决所求角正切的最值问题.7.【2014四川,文8】如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为,,此时气球的高是,则河流的宽度BC等于()A.B.C.D.【答案】C.【考点定位】解三角形.【名师点睛】在三角形中,已知两角一边时可以使用正弦定理解三角形.8【2017浙江,11】我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位,其结果领先世界一千多年,“割圆术”的第一步是计算单位圆内接正六边形的面积,.【答案】【考点】数学文化【名师点睛】本题粗略看起来文字量大,其本质为将正六边形分割为6个等边三角形,确定6个等边三角形的面积,其中对文字信息的读取及提取有用信息方面至关重要,考生面对这方面题目时应多加耐心,仔细分析题目中所描述问题的本质,结合所学进行有目的的求解.9.【2017课标II,文16】的内角的对边分别为,若,则【答案】【解析】由正弦定理可得【考点】正弦定理【名师点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图...