5-4数列求和练习文[A组·基础达标练]1.Sn=+++…+等于()A.B.C.D.答案B解析由Sn=+++…+,①得Sn=++…++,②①-②得,Sn=+++…+-=-,∴Sn=.2.已知{an}为等差数列,其公差为-2,且a7是a3与a9的等比中项,Sn为{an}的前n项和,n∈N*,则S10的值为()A.-110B.-90C.90D.110答案D解析由题意得a=a3·a9,又公差d=-2,∴(a3-8)2=a3(a3-12),∴a3=16.∴S10===5(a3+a3+5d)=5×(16+16-10)=110,故选D.3.已知等差数列{an}的前n项和为Sn,a5=5,S5=15,则数列的前100项和为()A.B.C.D.答案A解析由S5=5a3及S5=15得a3=3,∴d==1,a1=1,∴an=n,==-,所以数列的前100项和T100=1-+-+…+-=1-=,故选A.4.已知数列{an}满足an+1=+,且a1=,则该数列的前2016项的和等于()A.1509B.3018C.1512D.2016答案C解析因为a1=,又an+1=+,所以a2=1,从而a3=,a4=1,即得an=故数列的前2016项的和等于S2016=1008×=1512.5.[2015·日照一模]已知数列{an}的前n项和Sn=n2-6n,则{|an|}的前n项和Tn=()A.6n-n2B.n2-6n+18C.D.答案C解析由Sn=n2-6n可得,当n≥2时,an=Sn-Sn-1=n2-6n-(n-1)2+6(n-1)=2n-7.当n=1时,S1=-5=a1,也满足上式,所以an=2n-7,n∈N*.∴n≤3时,an<0;n>3时,an>0,∴Tn=6.已知函数f(n)=且an=f(n)+f(n+1),则a1+a2+a3+…+a100等于()A.-100B.100C.-1020D.10201答案B解析当n为奇数时,an=n2-(n+1)2=-(2n+1).当n为偶数时,an=-n2+(n+1)2=2n+1.∴a1+a2+a3+…+a100=-3+5-7+9-…-199+201=(-3+5)+(-7+9)+…+(-199+201)=2×50=100.7.[2013·重庆高考]已知{an}是等差数列,a1=1,公差d≠0,Sn为其前n项和,若a1,a2,a5成等比数列,则S8=________.答案64解析由a1、a2、a5成等比数列,得(a1+d)2=a1(a1+4d),即(1+d)2=1+4d,解得d=2(d=0舍去),S8=×8=64.8.[2013·辽宁高考]已知等比数列{an}是递增数列,Sn是{an}的前n项和.若a1,a3是方程x2-5x+4=0的两个根,则S6=________.答案63解析a1,a3是方程x2-5x+4=0的两个根且{an}是递增数列,故a3=4,a1=1,故公比q=2,S6==63.9.数列,,,,…,的前n项和为________.答案-+1解析由于an==n+,∴前n项和Sn=+++…+=(1+2+3+…+n)+=+=-+1.10.[2016·贵州七校联考]已知{an}是等差数列,{bn}是等比数列,Sn是数列{an}的前n项和,a1=b1=1,且b3S3=36,b2S2=8.(1)求an和bn;(2)若an
0,当n=1时,2a1=a+a1,解得a1=1(a1=0舍去);当n≥2时,有2Sn-1=a+an-1.于是2Sn-2Sn-1=a-a+an-an-1,即2an=a-a+an-an-1.于是a-a=an+an-1,即(an+an-1)(an-an-1)=an+an-1.因为an+an-1>0,所以an-an-1=1(n≥2).故数列{an}是首项为1,公差为1的等差数列,所以数列{an}的通项公式为an=n(n∈N*).(2)由(1)知,an=n,所以Sn=,...