【优化探究】2016高考数学一轮复习8-5椭圆课时作业文一、选择题1.“-30,m+3>0且5-m≠m+3,解之得-30),根据勾股定理可知,|MF1|2-|NF1|2=|MF2|2-|NF2|2,得到c=t,而a=,则e==,故选C.答案:C5.(2014年高考全国大纲卷)已知椭圆C:+=1(a>b>0)的左、右焦点为F1,F2,离心率为,过F2的直线l交C于A,B两点.若△AF1B的周长为4,则C的方程为()A.+=1B.+y2=1C.+=1D.+=1解析:由椭圆的性质知|AF1|+|AF2|=2a,|BF1|+|BF2|=2a,∴△AF1B的周长=|AF1|+|AF2|+|BF1|+|BF2|=4,∴a=.又e=,∴c=1.∴b2=a2-c2=2,∴椭圆的方程为+=1,故选A.答案:A二、填空题6.已知椭圆的焦点在x轴上,一个顶点为A(0,-1),其右焦点到直线x-y+2=0的距离为3,则椭圆的方程为________.解析:据题意可知椭圆方程是标准方程,故b=1.设右焦点为(c,0)(c>0),它到已知直线的距离为=3,解得c=,所以a2=b2+c2=3,故椭圆的方程为+y2=1.1答案:+y2=17.椭圆Γ:+=1(a>b>0)的左、右焦点分别为F1,F2,焦距为2c,若直线y=(x+c)与椭圆Γ的一个交点M满足∠MF1F2=2∠MF2F1,则该椭圆的离心率等于________.解析:依题意得∠MF1F2=60°,∠MF2F1=30°,∠F1MF2=90°,设|MF1|=m,则有|MF2|=m,|F1F2|=2m,该椭圆的离心率是e==-1.答案:-18.(2014年高考江西卷)过点M(1,1)作斜率为-的直线与椭圆C:+=1(a>b>0)相交于A,B两点,若M是线段AB的中点,则椭圆C的离心率等于________.解析:设A(x1,y1),B(x2,y2),则+=1,①+=1.②①、②两式相减并整理得=-·.把已知条件代入上式得,-=-×,∴=,故椭圆的离心率e==.答案:三、解答题9.(2014年高考新课标全国卷Ⅱ)设F1,F2分别是椭圆C:+=1(a>b>0)的左、右焦点,M是C上一点且MF2与x轴垂直.直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.解析:(1)根据c=及题设知M,2b2=3ac.将b2=a2-c2代入2b2=3ac,解得=或=-2(舍去).故C的离心率为.(2)由题意,得原点O为F1F2的中点,MF2∥y轴,所以直线MF1与y轴的交点D(0,2)是线段MF1的中点,故=4,即b2=4a.①由|MN|=5|F1N|得|DF1|=2|F1N|.设N(x1,y1),由题意知y1<0,则即代入C的方程,得+=1.②将①及c=代入②得+=1.解得a=7,b2=4a=28,故a=7,b=2.10.(2014年高考安徽卷)设F1,F2分别是椭圆E:+=1(a>b>0)的左、右焦点,过点F1的直线交椭圆E于A,B两点,|AF1|=3|F1B|.(1)若|AB|=4,△ABF2的周长为16,求|AF2|;(2)若cos∠AF2B=,求椭圆E的离心率.解析:(1)由|AF1|=3|F1B|,|AB|=4,得|AF1|=3,|F1B|=1.因为△ABF2的周长为16,所以由椭圆定义可得4a=16,|AF1|+|AF2|=2a=8.故|AF2|=2a-|AF1|=8-3=5.(2)设|F1B|=k,则k>0...