阶段质量检测(四)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在空间直角坐标系中,点A(-3,4,0)与点B(2,-1,6)的距离是()A.2B.2C.9D.2.方程x2+y2+x+y-m=0表示一个圆,则m的取值范围是()A.B.C.D.3.(2015·北京高考)圆心为(1,1)且过原点的圆的方程是()A.(x-1)2+(y-1)2=1B.(x+1)2+(y+1)2=1C.(x+1)2+(y+1)2=2D.(x-1)2+(y-1)2=24.点A(2a,a-1)在以点C(0,1)为圆心,半径为的圆上,则a的值为()A.±1B.0或1C.-1或D.-或15.过原点且倾斜角为60°的直线被圆x2+y2-4y=0所截得的弦长为()A.B.2C.D.26.已知过点P(2,2)的直线与圆(x-1)2+y2=5相切,且与直线ax-y+1=0垂直,则a=()A.-B.1C.2D.7.一条光线从点A(-1,1)出发,经x轴反射到⊙C:(x-2)2+(y-3)2=1上,则光走过的最短路程为()A.1B.2C.3D.48.过点M(1,2)的直线l与圆C:(x-2)2+y2=9交于A、B两点,C为圆心,当∠ACB最小时,直线l的方程为()A.x=1B.y=1C.x-y+1=0D.x-2y+3=09.圆C1:(x+2)2+(y-m)2=9与圆C2:(x-m)2+(y+1)2=4外切,则m的值为()A.2B.-5C.2或-5D.不确定10.过点P(-2,4)作圆O:(x-2)2+(y-1)2=25的切线l,直线m:ax-3y=0与直线l平行,则直线l与m的距离为()A.4B.2C.D.11.过点(3,1)作圆(x-1)2+y2=1的两条切线,切点分别为A,B,则直线AB的方程为()A.2x+y-3=0B.2x-y-3=0C.4x-y-3=0D.4x+y-3=012.已知圆C1:(x-2)2+(y-3)2=1,圆C2:(x-3)2+(y-4)2=9,M、N分别是圆C1、C2上的动点,P为x轴上的动点,则|PM|+|PN|的最小值为()A.5-4B.-1C.6-2D.二、填空题(本大题共4小题,每小题5分,共20分)13.在如图所示的长方体ABCDA1B1C1D1中,已知A1(a,0,c),C(0,b,0),则点B1的坐标为________.14.设A为圆(x-2)2+(y-2)2=1上一动点,则A到直线x-y-5=0的最大距离为________.15.从原点向圆x2+y2-12y+27=0作两条切线,则该圆夹在两条切线间的劣弧长为________.16.由动点P向圆x2+y2=1引两条切线PA,PB,切点分别为A,B,∠APB=60°,则动点P的轨迹方程是________.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)(2016·绍兴高一检测)已知圆C的方程是(x-1)2+(y-1)2=4,直线l的方程为y=x+m,求当m为何值时,(1)直线平分圆;(2)直线与圆相切.18.(本小题满分12分)已知直线l1:x-y-1=0,直线l2:4x+3y+14=0,直线l3:3x+4y+10=0,求圆心在直线l1上,与直线l2相切,截直线l3所得的弦长为6的圆的方程.19.(本小题满分12分)一座圆拱桥,当水面在如图所示位置时,拱顶离水面2米,水面宽12米,当水面下降1米后,水面宽多少米?20.(本小题满分12分)已知点M(x0,y0)在圆x2+y2=4上运动,N(4,0),点P(x,y)为线段MN的中点.(1)求点P(x,y)的轨迹方程;(2)求点P(x,y)到直线3x+4y-86=0的距离的最大值和最小值.21.(本小题满分12分)已知圆C:x2+y2+2x-4y+1=0,O为坐标原点,动点P在圆C外,过P作圆C的切线,设切点为M.(1)若点P运动到(1,3)处,求此时切线l的方程;(2)求满足条件|PM|=|PO|的点P的轨迹方程.22.(本小题满分12分)已知圆C:x2+y2-2x+4y-4=0,是否存在斜率为1的直线l,使以l被圆截得的弦AB为直径的圆过原点?若存在,求出直线l的方程;若不存在,说明理由.答案1.解析:选D由空间直角坐标系中两点间距离公式得:|AB|==.2.解析:选A由题意得1+1+4m>0,解得m>-.3.解析:选Dr==,∴所求方程为(x-1)2+(y-1)2=2,选D.4.解析:选D由题意,已知圆的方程为x2+(y-1)2=5,将点A的坐标代入圆的方程可得a=1或a=-.5.解析:选D直线方程为y=x,圆的方程化为x2+(y-2)2=22,∴r=2,圆心(0,2)到直线y=x的距离为d=1,∴半弦长为=,∴弦长为2.6.解析:选C因为点P(2,2)为圆(x-1)2+y2=5上的点,由圆的切线性质可知,圆心(1,0)与点P(2,2)的连线与过点P(2,2)的切线垂直.因为圆心(1,0)与点P(2,2)的连线的斜率k=2,故过点P(2,2)的切...