电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学 第二章 点、直线、平面之间的位置关系 2.3 直线、平面垂直的判定及其性质 2.3.1 直线与平面垂直的判定优化练习 新人教A版必修2-新人教A版高一必修2数学试题VIP免费

高中数学 第二章 点、直线、平面之间的位置关系 2.3 直线、平面垂直的判定及其性质 2.3.1 直线与平面垂直的判定优化练习 新人教A版必修2-新人教A版高一必修2数学试题_第1页
高中数学 第二章 点、直线、平面之间的位置关系 2.3 直线、平面垂直的判定及其性质 2.3.1 直线与平面垂直的判定优化练习 新人教A版必修2-新人教A版高一必修2数学试题_第2页
高中数学 第二章 点、直线、平面之间的位置关系 2.3 直线、平面垂直的判定及其性质 2.3.1 直线与平面垂直的判定优化练习 新人教A版必修2-新人教A版高一必修2数学试题_第3页
2.3.1直线与平面垂直的判定[课时作业][A组基础巩固]1.如果一条直线垂直于一个平面内的①三角形的两边;②梯形的两边;③圆的两条直径;④正六边形的两条边,则能保证该直线与平面垂直的是()A.①③B.②C.②④D.①②④解析:①③能保证这条直线垂直于该平面内的两条相交直线,②④中的两直线有可能平行.答案:A2.如图,BC是Rt△ABC的斜边,过A作△ABC所在平面α的垂线AP,连接PB、PC,过A作AD⊥BC于D,连接PD,那么图中直角三角形的个数是()A.5B.6C.7D.8解析:题图中直角三角形有△ABC,△ADC,△ADB,△PAD,△PAC,△PAB,△PDC,△PDB.答案:D3.如图,已知四棱锥的侧棱长与底面边长都是2,且SO⊥平面ABCD,O为底面的中心,则侧棱与底面所成的角为()A.75°B.60°C.45°D.30°解析:SO⊥平面ABCD,则∠SAC就是侧棱与底面所成的角,在Rt△SAO中,SA=2,AO=,∴∠SAO=45°.答案:C4.空间四边形ABCD的四边相等,则它的两对角线AC、BD的关系是()A.垂直且相交B.相交但不一定垂直C.垂直但不相交D.不垂直也不相交解析:取BD中点O,连接AO,CO,则BD⊥AO,BD⊥CO,∴BD⊥面AOC,BD⊥AC,又BD、AC异面,∴选C.答案:C5.已知P是△ABC所在平面外的一点,点P与AB、AC、BC的距离相等,且点P在△ABC上的射影O在△ABC内,则O一定是△ABC的()A.内心B.外心C.重心D.中心解析:如图所示,过点P作PD⊥AB,PE⊥AC,PF⊥BC,分别交AB、AC、BC于点D、E、F.O是点P在平面ABC内的射影,连接OD、OE、OF.因为点P到AB、AC、BC的距离相等,且PO⊥平面ABC,所以PD=PE=PF,PO=PO=PO,又因为∠POD=∠POE=∠POF=90°,所以OD=OE=OF,因为PO⊥AB,PD⊥AB,且PD∩PO=P.所以AB⊥平面POD,所以AB⊥OD.同理可证得OF⊥BC,OE⊥AC.又因为OD=OE=OF,所以点O到三角形三边的距离相等,故点O为△ABC的内心,故选A.答案:A6.在三棱锥OABC中,三条棱OA,OB,OC两两互相垂直,且OA=OB=OC,M是AB的中点,则OM与平面ABC所成角的正切值大小是________.解析:画出三棱锥(图略),将OM与平面ABC所成的角放在直角三角形OMC中求解,易知tan∠OMC===.答案:7.已知a,b,c是三条直线,α是平面.若c⊥a,c⊥b,a⊂α,b⊂α,且________(填上一个条件即可),则有c⊥α.解析:由直线与平面垂直的判定定理知,若c⊥α,需c垂直平面α内的两条相交直线.答案:a∩b=A8.如图所示,在正三棱锥ABCD中,E,F分别为BD,AD的中点,EF⊥CF,则直线BD与平面ACD所成的角为________.解析:因为三棱锥ABCD为正三棱锥,所以可证AB⊥CD.又EF⊥CF,所以AB⊥CF,所以AB⊥平面ACD,故可知直线BD与平面ACD所成的角为∠BDA=45°.答案:45°9.如图,在△ABC中,∠B=90°,SA⊥平面ABC,点A在SB和SC上的射影分别为N、M.求证:MN⊥SC.证明: SA⊥平面ABC,BC⊂平面ABC,∴SA⊥BC. ∠B=90°,即AB⊥BC,AB∩SA=A,∴BC⊥平面SAB. AN⊂平面SAB,∴BC⊥AN.又 AN⊥SB,SB∩BC=B,∴AN⊥平面SBC. SC⊂平面SBC.∴AN⊥SC.又 AM⊥SC,AM∩AN=A,∴SC⊥平面AMN. MN⊂平面AMN,∴SC⊥MN.10.如图所示,AB是圆柱的母线,BD是圆柱底面圆的直径,C是底面圆周上一点,且AB=BC=2,∠CBD=45°.(1)求证:CD⊥平面ABC;(2)求直线BD与平面ACD所成角的大小.解析:(1)证明: BD是底面圆的直径,∴CD⊥BC.又AB⊥平面BCD,CD⊂平面BCD,∴AB⊥CD. AB∩BC=C,∴CD⊥平面ABC.(2)取AC的中点E,连接DE(图略),由(1)知BE⊥CD,又E是AC的中点,AB=BC=2,∠ABC=90°,∴BE⊥AC,∴BE⊥面ACD,∴直线BD与面ACD所成的角为∠BDE.而BE⊥面ACD,则BE⊥ED,即△BED为直角三角形.又AB=BC=2,∠CBD=45°,则BD=2,BE=,∴sin∠BDE==,∴∠BDE=30°.[B组能力提升]1.如图所示,在正四棱锥SABCD(顶点S在底面ABCD上的射影是正方形ABCD的中心)中,E是BC的中点,P点在侧面△SCD内及其边界上运动,并且总是保持PE⊥AC.则动点P的轨迹与△SCD组成的相关图形最有可能是图中的()解析:如图所示,连接BD与AC相交于点O,连接SO,取SC的中点F,取CD的中点G,连接EF,EG,FG,因为E,F分别是BC,SC的中点,所以EF∥SB,EF⊄平面SBD,SB⊂平面...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

海博书城+ 关注
实名认证
内容提供者

从事历史教学,热爱教育,高度负责。

最新文章

确认删除?
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部