第3课时定点、定值、探索性问题题型一定点问题例1(2017·长沙联考)已知椭圆+=1(a>0,b>0)过点(0,1),其长轴、焦距和短轴的长的平方依次成等差数列.直线l与x轴正半轴和y轴分别交于点Q、P,与椭圆分别交于点M、N,各点均不重合且满足PM=λ1MQ,PN=λ2NQ.(1)求椭圆的标准方程;(2)若λ1+λ2=-3,试证明:直线l过定点并求此定点.(1)解设椭圆的焦距为2c,由题意知b=1,且(2a)2+(2b)2=2(2c)2,又a2=b2+c2,∴a2=3.∴椭圆的方程为+y2=1.(2)证明由题意设P(0,m),Q(x0,0),M(x1,y1),N(x2,y2),设l方程为x=t(y-m),由PM=λ1MQ知(x1,y1-m)=λ1(x0-x1,-y1),∴y1-m=-y1λ1,由题意y1≠0,∴λ1=-1.同理由PN=λ2NQ知λ2=-1. λ1+λ2=-3,∴y1y2+m(y1+y2)=0,①联立得(t2+3)y2-2mt2y+t2m2-3=0,∴由题意知Δ=4m2t4-4(t2+3)(t2m2-3)>0,②且有y1+y2=,y1y2=,③③代入①得t2m2-3+2m2t2=0,∴(mt)2=1,由题意mt<0,∴mt=-1,满足②,得直线l方程为x=ty+1,过定点(1,0),即Q为定点.思维升华圆锥曲线中定点问题的两种解法(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法:根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.INCLUDEPICTURE"E:\\程亚杰\\2017\\一轮\\数学\\原WORD\\跟踪训练1.TIF"\*MERGEFORMATINETINCLUDEPICTURE"E:\\程亚杰\\2017\\一轮\\数学\\原WORD\\跟踪训练1.TIF"\*MERGEFORMATINETINCLUDEPICTURE"E:\\程亚杰\\2017\\一轮\\数学\\原WORD\\跟踪训练1.TIF"\*MERGEFORMATINETINCLUDEPICTURE"E:\\程亚杰\\2017\\一轮\\数学\\原WORD\\跟踪训练1.TIF"\*MERGEFORMATINETINCLUDEPICTURE"E:\\程亚杰\\2017\\一轮\\数学\\原WORD\\跟踪训练1.TIF"\*MERGEFORMATINETINCLUDEPICTURE"E:\\程亚杰\\2017\\一轮\\数学\\原WORD\\跟踪训练1.TIF"\*MERGEFORMATINETINCLUDEPICTURE"E:\\程亚杰\\2017\\一轮\\数学\\数学人教版\\word\\跟踪训练1.TIF"\*MERGEFORMATINETINCLUDEPICTURE"E:\\程亚杰\\2017\\一轮\\数学\\数学人教版\\word\\跟踪训练1.TIF"\*MERGEFORMATINETINCLUDEPICTURE"E:\\马玉娜\\马玉娜\\2017\\大一轮\\大一轮一校\\数学人教\\程亚杰\\word\\跟踪训练1.TIF"\*MERGEFORMATINETINCLUDEPICTURE"E:\\马玉娜\\马玉娜\\2017\\大一轮\\大一轮一校\\数学人教\\程亚杰\\word\\跟踪训练1.TIF"\*MERGEFORMATINET(2016·河北衡水中学调研)如图,已知椭圆C的中心在原点,焦点在x轴上,离心率e=,F是右焦点,A是右顶点,B是椭圆上一点,BF⊥x轴,|BF|=.1INCLUDEPICTURE"E:\\程亚杰\\2017\\一轮\\数学\\原WORD\\9-73.TIF"\*MERGEFORMATINETINCLUDEPICTURE"E:\\程亚杰\\2017\\一轮\\数学\\原WORD\\9-73.TIF"\*MERGEFORMATINETINCLUDEPICTURE"E:\\程亚杰\\2017\\一轮\\数学\\原WORD\\9-73.TIF"\*MERGEFORMATINETINCLUDEPICTURE"E:\\程亚杰\\2017\\一轮\\数学\\原WORD\\9-73.TIF"\*MERGEFORMATINETINCLUDEPICTURE"E:\\程亚杰\\2017\\一轮\\数学\\原WORD\\9-73.TIF"\*MERGEFORMATINETINCLUDEPICTURE"E:\\程亚杰\\2017\\一轮\\数学\\原WORD\\9-73.TIF"\*MERGEFORMATINETINCLUDEPICTURE"E:\\程亚杰\\2017\\一轮\\数学\\数学人教版\\word\\9-73.TIF"\*MERGEFORMATINETINCLUDEPICTURE"E:\\程亚杰\\2017\\一轮\\数学\\数学人教版\\word\\9-73.TIF"\*MERGEFORMATINETINCLUDEPICTURE"E:\\马玉娜\\马玉娜\\2017\\大一轮\\大一轮一校\\数学人教\\程亚杰\\word\\9-73.TIF"\*MERGEFORMATINETINCLUDEPICTURE"E:\\马玉娜\\马玉娜\\2017\\大一轮\\大一轮一校\\数学人教\\程亚杰\\word\\9-73.TIF"\*MERGEFORMATINET(1)求椭圆C的方程;(2)设直线l:x=ty+λ是椭圆C的一条切线,点M(-,y1),点N(,y2)是切线l上两个点,证明:当t,λ变化时,以MN为直径的圆过x轴上的定点,并求出定点坐标.解(1)由题意设椭圆方程为+=1(a>b>0),①焦点F(c,0),因为=,②将点B(c,)的坐标代入方程①得+=1.③由②③结合a2=b2+c2,得a=,b=1.故所求椭圆方程为+y2=1...