第三课时●课题§3.2分式的乘除法●教学目标(一)教学知识点1.分式乘除法的运算法则,2.会进行分式的乘除法的运算.(二)能力训练要求1.类比分数乘除法的运算法则.探索分式乘除法的运算法则.2.在分式乘除法运算过程中,体会因式分解在分式乘除法中的作用,发展有条理的思考和语言表达能力.3.用分式的乘除法解决生活中的实际问题,提高“用数学”的意识.(三)情感与价值观要求1.通过师生共同交流、探讨,使学生在掌握知识的基础上,认识事物之间的内在联系,获得成就感.2.培养学生的创新意识和应用数学的意识.●教学重点让学生掌握分式乘除法的法则及其应用.●教学难点分子、分母是多项式的分式的乘除法的运算.●教学方法引导、启发、探求●教具准备投影片四张第一张:探索、交流,(记作§3.2A);第二张:例1,(记作§3.2B);第三张:例2,(记作§3.2C);第四张:做一做,(记作§3.2D).●教学过程Ⅰ.创设情境,引入新课[师]上节课,我们学习了分式的基本性质,我们可以发现它与分数的基本性质类似,那么分式的运算是否也和分数的运算类似呢?下面我们看投影片(§3.2A)探索、交流——观察下列算式:×=,×=,÷=×=,÷=×=.猜一猜×=?÷=?与同伴交流.[生]观察上面运算,可知:两个分数相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分数相除,把除数的分子和分母颠倒位置后,再与被除数相乘.即×=;÷=×=.这里字母a,b,c,d都是整数,但a,c,d不为零.[师]如果让字母代表整式,那么就得到类似于分数的分式的乘除法.Ⅱ.讲授新课1.分式的乘除法法则[师生共析]分式的乘除法法则与分数的乘除法法则类似:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.2.例题讲解出示投影片(§3.2B)[例1]计算:(1)·;(2)·.分析:(1)将算式对照乘除法运算法则,进行运算;(2)强调运算结果如不是最简分式时,一定要进行约分,使运算结果化为最简分式.解:(1)·===;(2)·==.出示投影片(§3.2C)[例2]计算:(1)3xy2÷;(2)÷分析:(1)将算式对照分式的除法运算法则,进行运算;(2)当分子、分母是多项式时,一般应先分解因式,并在运算过程中约分,可以使运算简化,避免走弯路.解:(1)3xy2÷=3xy2·==x2;(2)÷=×===3.做一做出示投影片(§3.2D)通常购买同一品种的西瓜时,西瓜的质量越大,花费的钱越多.因此人们希望西瓜瓤占整个西瓜的比例越大越好.假如我们把西瓜都看成球形,并把西瓜瓤的密度看成是均匀的,西瓜的皮厚都是d,已知球的体积公式为V=πR3(其中R为球的半径),那么(1)西瓜瓤与整个西瓜的体积各是多少?(2)西瓜瓤与整个西瓜的体积比是多少?(3)买大西瓜合算还是买小西瓜合算?[师]夏天快到了,你一定想买一个又大又甜又合算的大西瓜.赶快思考上面的问题,相信你一定会感兴趣的.[生]我们不妨设西瓜的半径为R,根据题意,可得:(1)整个西瓜的体积为V1=πR3;西瓜瓤的体积为V2=π(R-d)3.(2)西瓜瓤与整个西瓜的体积比为:===()3=(1-)3.(3)我认为买大西瓜合算.由=(1-)3可知,R越大,即西瓜越大,的值越小,(1-)的值越大,(1-)3也越大,则的值也越大,即西瓜瓤占整个西瓜的体积比也越大,因此,买大西瓜更合算.Ⅲ.随堂练习1.计算:(1)·;(2)(a2-a)÷;(3)÷2.化简:(1)÷;(2)(ab-b2)÷解:1.(1)·===;(2)(a2-a)÷=(a2-a)×==(a-1)2=a2-2a+1(3)÷=×==(x-1)y=xy-y.2.(1)÷=×==(x-2)(x+2)=x2-4.(2)(ab-b2)÷=(ab-b2)×==b.Ⅳ.课时小结[师]同学们这节课有何收获呢?[生]我们学习分式的基本性质可以发现它类似于分数的基本性质.今天,我们学习分式的乘除法的运算法则,也类似于分数乘除法的运算法则.我们以后对于分式的学习是否也类似于分数,加以推广便可.[师]很好!其实,数学历史的发展就是不断地将原有的知识加以推广和扩展.[生]今天我们学习了一种新的运算,能运用因式分解将分子、分母是多项式的分式乘或除,我觉得我们很了不起.……Ⅴ....