递推数列通项公式的求法例1已知数列中,,求2,111nnaaa}{nana12nannnnanaaa,求改为:将例变式1,11111解:)1,.....(1)1(......)4..(,.........514).3..(,.........413)2.(,.........312)1.(,.........211145342312nnnaaaaaaaaaannnnnanaaa求改为:将例变式,1,11111将以上n-1个等式相加,有2)1(nnan所以11342312)(...)()()(aaaaaaaaaaannnn可表示为其中11342312...5432)(...)()()(aanaaaaaaaannn2)1)(1(nn上述方法,称为迭加法nnnaaaa,求改为:将例变式2,11211nnnaanaa,求改为:将例变式)1(,1131112nna,1)1(................)3(..........4)2(..........3)1(..........2:1342312个等式相乘将以上解nnnaaaaaaaann!!*...*4*3*2.....11342312nannaaaaaaaaaannnn所以11342312......aaaaaaaaaaannnn可表示为,其中这种方法,称为迭乘法nnnaaaa,求为:将例变式32,11411)3(233,32222)(211111nnnnnnnnnnaakaakaakakakaka则有对应系数相等与解:.43,23}{23311为首项的等比数列以为公比是以所以aaaannn3222*22*4311121nnnnnnaa即所以(1)在数列中,}{nannnaaaa求,1,12111(2)数列na中,12a,1nnaacn(c是常数,123n,,,),且123aaa,,成公比不为1的等比数列.(I)求c的值;(II)求na的通项公式.2c22(12)nannn,,1)2/1(2nna由递推公式求通项:(1)累加法(迭加法)(2)累乘法(迭乘法)(3)待定系数法(构造新数列)1()nnaafn1()nnafna为常数)d,(,1cdcaannnnnnaaaa,求改为将例3,11)2(11有什么关系?与加的常数为常数)中,kdccdcaann,d,(,)1(1