2011年全国各地100份中考数学试卷分类汇编第43章开放型问题1.(2011四川宜宾,22,7分)如图,飞机沿水平方向(A,B两点所在直线)飞行,前方有一座高山,为了避免飞机飞行过低,就必须测量山顶M到飞行路线AB的距离MN.飞机能够测量的数据有俯角和飞行距离(因安全因素,飞机不能飞到山顶的正上方N处才测飞行距离),请设计一个求距离MN的方案,要求:(1)指出需要测量的数据(用字母表示,并在图中标出);(2)用测出的数据写出求距离MN的步骤.【答案】解:此题为开放题,答案不惟一,只要方案设计合理,可参照给分⑴如图,测出飞机在A处对山顶的俯角为,测出飞机在B处对山顶的俯角为,测出AB的距离为d,连接AM,BM.⑵第一步,在中,∴第二步,在中,∴其中,解得.2.(2011山东济宁,22,8分)数学课上,李老师出示了这样一道题目:如图,正方形的边长为,为边延长线上的一点,为的中点,的垂直平分线交边于,交边的延长线于.当时,与的比值是多少?经过思考,小明展示了一种正确的解题思路:过作直线平行于交,分别于,,如图,则可得:,因为,所以.可求出和的值,进而可求得与的比值.(1)请按照小明的思路写出求解过程.[来源:学#科#网Z#X#X#K][来源:Zxxk.Com](2)小东又对此题作了进一步探究,得出了的结论.你认为小东的这个结论正确吗?如果正确,请给予证明;如果不正确,请说明理由.NMBA(22题图)(第25题解答图)NMBA(1)解:过作直线平行于交,分别于点,,则,,.∵,∴.2分[来源:学科网]∴,.∴.4分(2)证明:作∥交于点,5分则,.∵,∴.∵,,∴.∴.7分∴.8分3.(2011山东威海,24,11分)如图,ABCD是一张矩形纸片,AD=BC=1,AB=CD=5.在矩形ABCD的边AB上取一点M,在CD上取一点N,将纸片沿MN折叠,使MB与DN交于点K,(第22题)(第22题)HBCDEMNAP得到△MNK.(1)若∠1=70°,求∠MNK的度数.(2)△MNK的面积能否小于?若能,求出此时∠1的度数;若不能,试说明理由.(3)如何折叠能够使△MNK的面积最大?请你利用备用图探究可能出现的情况,求出最大值.(备用图)【答案】解:∵ABCD是矩形,∴AM∥DN,∴∠KNM=∠1.∵∠KMN=∠1,∴∠KNM=∠KMN.∵∠1=70°,∴∠KNM=∠KMN=70°.∴∠MNK=40°.(2)不能.过M点作ME⊥DN,垂足为点E,则ME=AD=1,由(1)知∠KNM=∠KMN.∴MK=NK.[来源:学科网ZXXK]又MK≥ME,∴NK≥1.∴.∴△MNK的面积最小值为,不可能小于.(3)分两种情况:情况一:将矩形纸片对折,使点B与点D重合,此时点K也与点D重合.设MK=MD=x,则AM=5-x,由勾股定理,得,解得,.即.∴.(情况一)情况二:将矩形纸片沿对角线AC对折,此时折痕为AC.设MK=AK=CK=x,则DK=5-x,同理可得即.∴.[来源:学科网]∴△MNK的面积最大值为1.3.(情况二)[来源:学&科&网Z&X&X&K]4.(2011山东烟台,24,10分)已知:如图,在四边形ABCD中,∠ABC=90°,CD⊥AD,AD2+CD2=2AB2.[来源:学科网](1)求证:AB=BC;(2)当BE⊥AD于E时,试证明:BE=AE+CD.【答案】(1)证明:连接AC,∵∠ABC=90°,∴AB2+BC2=AC2.∵CD⊥AD,∴AD2+CD2=AC2.∵AD2+CD2=2AB2,∴AB2+BC2=2AB2,∴AB=BC.(2)证明:过C作CF⊥BE于F.∵BE⊥AD,∴四边形CDEF是矩形.∴CD=EF.[来源:Zxxk.Com]∵∠ABE+∠BAE=90°,∠ABE+∠CBF=90°,∴∠BAE=∠CBF,∴△BAE≌△CBF.[来源:Zxxk.Com]∴AE=BF.∴BE=BF+EF=AE+CD.4.(2011湖北襄阳,21,6分)[来源:学*科*网Z*X*X*K]如图6,点D,E在△ABC的边BC上,连接AD,AE.①AB=AC;②AD=AE;③BD=CE.以此三个等式中的两个作为命题的题设,另一个作为命题的结论,构成三个命题:①②③;①③②;②③①.ABCDE(1)以上三个命题是真命题的为(直接作答);(2)请选择一个真命题进行证明(先写出所选命题,然后证明).【答案】(1)①②③;①③②;②③①.3分(2)(略)6分EDCBA图6