下载后可任意编辑高中数学最详细重点知识点全总结高中数学重点知识点全总结1、命题的四种形式及其相互关系是什么?(互为逆否关系的命题是等价命题。)原命题与逆否命题同真、同假;逆命题与否命题同真同假。2、对映射的概念了解吗?映射f:A→B,是否注意到A中元素的任意性和B中与之对应元素的唯一性,哪几种对应能构成映射?(一对一,多对一,允许B中有元素无原象。)3、函数的三要素是什么?如何比较两个函数是否相同?(定义域、对应法则、值域)4、反函数存在的条件是什么?(一一对应函数)求反函数的步骤掌握了吗?(①反解x;②互换x、y;③注明定义域)5、反函数的性质有哪些?①互为反函数的图象关于直线y=x对称;②保存了原来函数的单调性、奇函数性;6、函数f(x)具有奇偶性的必要(非充分)条件是什么?(f(x)定义域关于原点对称)下载后可任意编辑高中数学知识点总结1、三类角的求法:①找出或作出有关的角。②证明其符合定义,并指出所求作的角。③计算大小(解直角三角形,或用余弦定理)。2、正棱柱——底面为正多边形的直棱柱正棱锥——底面是正多边形,顶点在底面的射影是底面的中心。正棱锥的计算集中在四个直角三角形中:3、怎样推断直线l与圆C的位置关系?圆心到直线的距离与圆的半径比较。直线与圆相交时,注意利用圆的“垂径定理”。4、对线性规划问题:作出可行域,作出以目标函数为截距的直线,在可行域内平移直线,求出目标函数的最值。不看后悔!清华名师揭秘学好高中数学的方法培育兴趣是关键。学生对数学产生了兴趣,自然有动力去钻研。如何培育兴趣呢?(1)欣赏数学的美感比如几何图形中的对称、变换前后的不变量、概念的严谨、逻辑的严密……举个例子,通过对旋转变换及其不变量的讨论,我们可以证明反下载后可任意编辑比例函数、“对勾函数”的图象都是双曲线——平面上到两个定点的距离之差的绝对值为定值(小于两个定点之间的距离)的点的集合。(2)注意到数学在实际生活中的应用。例如和日常生活息息相关的等额本金、等额本息两种不同的还款方式,用数列的知识就可以理解.学好数学,是现代公民的基本素养之一啊.(3)采纳灵活的教学手段,与时俱进。利用多种技术手段,声、光、电多管齐下,老师可以借此把一些知识讲得更具体形象,学生也更容易接受,理解更深。(4)适当看一些科普类的书籍和文章。比如:学圆锥曲线的时候,可以看看一些建筑物的外形,它们被平面所截出的曲线往往就是各种圆锥曲线,很多文章对此都有介绍;还有圆锥曲线光学性质的应用,这方面的文章也不少。高中数学基本不等式知识点什么是不等式一般地,用纯粹的大于号“>”、小于号“bb>a②传递性:a>b,b>ca>c③可加性:a>ba+c>b+c④可积性:a>b,c>0ac>bc下载后可任意编辑⑤加法法则:a>b,c>da+c>b+d⑥乘法法则:a>b>0,c>d>0ac>bd⑦乘方法则:a>b>0,an>bn(n∈N)⑧开方法则:a>b>0数学知识点2.算术平均数与几何平均数定理:(1)假如a、b∈R,那么a2+b2≥2ab(当且仅当a=b时等号)(2)假如a、b∈R+,那么(当且仅当a=b时等号)推广:假如为实数,则重要结论(1)假如积xy是定值P,那么当x=y时,和x+y有最小值2;(2)假如和x+y是定值S,那么当x=y时,和xy有最大值S2/4。数学知识点3.证明不等式的常用方法:比较法:比较法是最基本、最重要的方法。当不等式的两边的差能分解因式或能配成平方和的形式,则选择作差比较法;当不等式的两边都是正数且它们的商能与1比较大小,则选择作商比较法;碰到绝对值或根式,我们还可以考虑作平方差。综合法:从已知或已证明过的不等式出发,根据不等式的性质推导出欲证的不等式。综合法的放缩常常用到均下载后可任意编辑值不等式。分析法:不等式两边的联系不够清楚,通过寻找不等式成立的充分条件,逐步将欲证的不等式转化,直到寻找到易证或已知成立的结论。