精选第二讲比和比例教学目标:1、比例的基本性质2、熟练掌握比例式的恒等变形及连比问题3、能够进行各种条件下比例的转化,有目的的转化;4、单位“1”变化的比例问题5、方程解比例应用题知识点拨:比例与百分数作为一种数学工具在人们日常生活中处理多组数量关系非常有用,这一部分内容也是小升初考试的重要内容.通过本讲需要学生掌握的内容有:一、比和比例的性质性质1:若a:b=c:d,则(a+c):(b+d)=a:b=c:d;性质2:若a:b=c:d,则(a-c):(b-d)=a:b=c:d;性质3:若a:b=c:d,则(a+xc):(b+xd)=a:b=c:d;(x为常数)性质4:若a:b=c:d,则a×d=b×c;(即外项积等于内项积)正比例:如果a÷b=k(k为常数),则称a、b成正比;反比例:如果a×b=k(k为常数),则称a、b成反比.二、主要比例转化实例①xaybybxa;xyab;abxy;②xaybmxamyb;xmaymb(其中0m);③xaybxaxyab;xyabxa;xyabxyab;L④xayb,yczdxaczbd;::::xyzacbcbd;⑤x的ca等于y的db,则x是y的adbc,y是x的bcad.三、按比例分配与和差关系⑴按比例分配例如:将x个物体按照:ab的比例分配给甲、乙两个人,那么实际上甲、乙两个人各自分配到的物体数量与x的比分别为:aab和:bab,所以甲分配到axab个,乙分配到bxab个.⑵已知两组物体的数量比和数量差,求各个类别数量的问题例如:两个类别A、B,元素的数量比为:ab(这里ab),数量差为x,那么A的元素数量为axab,B的元素数量为bxab,所以解题的关键是求出ab与a或b的比值.四、比例题目常用解题方式和思路解答分数应用题关键是正确理解、运用单位“l”。题中如果有几个不同的单位“1”,必须根据具体情况,将不同的单位“1”,转化成统一的单位“1”,使数量关系简单化,达到解决问题的效果。在解答分数应用题时,要注意以下几点:1.题中有几种数量相比较时,要选择与各个已知条件关系密切、便于直接解答的数量为单位“1”。2.若题中数量发生变化的,一般要选择不变量为单位“1”。3.应用正、反比例性质解答应用题时要注意题中某一数量是否一定,然后再确定是成正比例,还是成反比例。找出这些具体数量相对应的分率与其他具体数量之间的正、反比例关系,就能找到更好、更巧的解法。4.题中有明显的等量关系,也可以用方程的方法去解。5.赋值解比例问题例题精讲:模块一、比例转化【例1】已知甲、乙、丙三个数,甲等于乙、丙两数和的13,乙等于甲、丙两数和的12,丙等于甲、乙两精选数和的57,求::甲乙丙.【解析】由甲等于乙、丙两数和的13,得到甲等于三个数和的113+14,同样的乙等于甲、丙两数和的112+13,同样的丙等于甲、乙两个数和的557512,所以115::::3:4:54312甲乙丙.【例2】已知甲、乙、丙三个数,甲的一半等于乙的2倍也等于丙的23,那么甲的23、乙的2倍、丙的一半这三个数的比为多少?【解析】甲的一半、乙的2倍、丙的23这三个数的比为1:1:1,所以甲、乙、丙这三个数的比为121:12:123即132::22,化简为4:1:3,那么甲的23、乙的2倍、丙的一半这三个数的比为214:12:332即83:2:32,化简为16:12:9.【例3】如下图所示,圆B与圆C的面积之和等于圆A面积的45,且圆A中的阴影部分面积占圆A面积的16,圆B的阴影部分面积占圆B面积的15,圆C的阴影部分面积占圆C面积的13.求圆A、圆B、圆C的面积之比.CBA【解析】设A与B的共同部分的面积为x,A与C的共同部分的面积为y,则根据题意有564ABCxy,5Bx,3Cy,于是得到56453BCBC,这条式子可化简为15BC,所以5204ABCC.最后得到::20:15:1ABC.【例4】某俱乐部男、女会员的人数之比是3:2,分为甲、乙、丙三组.已知甲、乙、丙三组的人数比是10:8:7,甲组中男、女会员的人数之比是3:1,乙组中男、女会员的人数之比是5:3.求丙组中男、女会员人数之比.【解析】以总人数为1,则甲组男会员人数为103310873110,女会员为31110310,乙组男会员为8511087535,女会员为1335525;丙组男会员为33113+210510,女会员为21393+2102550;所以,丙组中男、女会员人数之比为19:5:91050.【巩固】一项公路的修建工程被平均分成两份承包给甲、乙个工程队建设,两个工程队建设了相同多的一段时间后,分别剩下60%、40%的任务没有完成,已知两个工程队的工作效率...