电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

云南省曲靖市师宗县五龙民族中学2014秋人教版数学九年级上册第22章二次函数小结与复习(3)教案VIP免费

云南省曲靖市师宗县五龙民族中学2014秋人教版数学九年级上册第22章二次函数小结与复习(3)教案_第1页
云南省曲靖市师宗县五龙民族中学2014秋人教版数学九年级上册第22章二次函数小结与复习(3)教案_第2页
云南省曲靖市师宗县五龙民族中学2014秋人教版数学九年级上册第22章二次函数小结与复习(3)教案_第3页
教学时间课题《二次函数》小结与复习(3)课型新授课教学目标知识和能力1.使学生掌握二次函数模型的建立,并能运用二次函数的知识解决实际问题。2.能够分析和表示不同背景下实际问题中变量之间的二次函数关系,获得用数学方法解决实际问题的经验,感受数学模型、思想在实际问题中的应用价值。过程方法情感态度价值观教学重点利用二次函数的知识解决实际问题,并对解决问题的策略进行反思。教学难点将实际问题转化为函数问题,并利用函数的性质进行决策。教学准备教师多媒体课件学生“五个一”课堂教学程序设计设计意图一、例题精析,引导学法,指导建模1.何时获得最大利润问题。例:重庆市某区地理环境偏僻,严重制约经济发展,丰富的花木产品只能在本地销售,区政府对该花木产品每投资x万元,所获利润为P=-(x-30)2+10万元,为了响应我国西部大开发的宏伟决策,区政府在制定经济发展的10年规划时,拟开发此花木产品,而开发前后可用于该项目投资的专项资金每年最多50万元,若开发该产品,在前5年中,必须每年从专项资金中拿出25万元投资修通一条公路,且5年修通,公路修通后,花木产品除在本地销售外,还可运往外地销售,运往外地销售的花木产品,每投资x万元可获利润Q=-(50-x)2+(50-x)+308万元。(1)若不进行开发,求10年所获利润最大值是多少?(2)若按此规划开发,求10年所获利润的最大值是多少?(3)根据(1)、(2)计算的结果,请你用一句话谈谈你的想法。学生活动:投影给出题目后,让学生先自主分析,小组进行讨论。教师活动:在学生分析、讨论过程中,对学生进行学法引导,引导学生先了解二次函数的基本性质,并学会从实际问题中抽象出二次函数的模型,借助二次函数的性质来解决这类实际应用题。教师精析:(1)若不开发此产品,按原来的投资方式,由P=-(x-30)2+10知道,只需从50万元专款中拿出30万元投资,每年即可获最大利润10万元,则10年的最大利润为M1=10×10=100万元。(2)若对该产品开发,在前5年中,当x=25时,每年最大利润是:P=-(25-30)2+10=9.5(万元)则前5年的最大利润为M2=9.5×5=47.5万元设后5年中x万元就是用于本地销售的投资。则由Q=-(50-x)+(50-x)+308知,将余下的(50-x万元全部用于外地销售的投资.才有可能获得最大利润;则后5年的利润是:M3=[-(x-30)2+10]×5+(-x2+x+308)×5=-5(x-20)2+3500故当x=20时,M3取得最大值为3500万元。∴10年的最大利润为M=M2+M3=3547.5万元(3)因为3547.5>100,所以该项目有极大的开发价值。强化练习:某公司试销一种成本单价为500元/件的新产品,规定试销时的销售单价不低于成本单价,又不高于800元/件,经试销调查,发现销售量y(件)与销售单价x(元/件)可近似看做—次函数y=kx+b的关系,如图所示。(1)根据图象,求一次函数y=kx+b的表达式,(2)设公司获得的毛利润(毛利润=销售总价-成本总价)为S元,①试用销售单价x表示毛利润S;②试问销售单价定为多少时,该公司可获得最大利润?最大利润是多少?此时的销售量是多少?分析:(1)由图象知直线y=kx+b过(600,400)、(700,300)两点,代入可求解析式为y=-x+1000(2)由毛利润S=销售总价-成本总价,可得S与x的关系式。S=xy-500y=x·(-x+1000)-500(-x+100)=-x2+1500x-500000=-(x-750)2+62500(500<x<800)所以,当销售定价定为750元时,获最大利润为62500元。此时,y=-x+1000=-750+1000=250,即此时销售量为250件。2.最大面积是多少问题。例:某广告公司设计一幅周长为12米的矩形广告牌,广告设计费为每平方米1000元,设矩形的边长为x,面积为S平方米。(1)求出S与x之间的函数关系式;(2)请你设计一个方案,使获得的设计费最多,并求出这个设计费用;(3)为了使广告牌美观、大方,要求做成黄金矩形,请你按要求设计,并计算出可获得的设计费是多少?(精确到元)(参与资料:①当矩形的长是宽与(长+宽)的比例中项时,这样的矩形叫做黄金矩形,②≈2.236)学生活动:让学生根据已有的经验,根据实际几何问题中的数量关系,建立恰当的二次函数模型,并借助二次函数的相关知识来解决这类问题。教师精析:(1)由矩形面积公式...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

百万精品文档+ 关注
实名认证
内容提供者

中小学学习资料教案课件

最新文章

确认删除?
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部