第一课时教学内容:分数除以整数(例1、例2)教学目标1、引导学生在具体的情景中借助已有的经验理解分数除法的意义并掌握分数除法的计算方法,能正确计算分数除以整数。2、通过富有启发性的问题情景和探索性的学习活动,引导学生主动参与、独立思考、合作交流,形成计算技能。教学重难点1、分数除法意义的理解;2、分数除以整数的算法的探究。教学过程一、创设情景导入:1、同学们,你们去过超市购物吗?你去买了一些什么东西呢?你有没有过相同的东西买几件的时候?能不能举个例?(指名让学生举例并用算式表示求该例的总价)二、新知探究:(一)分数除法的意义1、出示例1的教学挂图,让学生看图观察图意,指名口答图意和应该怎样列式。2、上面的问题能改编成用除法计算的问题吗?(学生独立思考,口答问题和列式)3、100g=?kg,你能将上面的问题改成用kg作单位的吗?(引导学生将整数乘除法应用题改变成分数乘除法应用题)4、引导学生观察比较整数乘除法的问题和改写后的问题,分析得出整数除法和分数除法的联系以及分数除法的意义。5、练习:课本28页做一做。学生独立练习,订正时让学生说明为什么这样填。(二)、分数除以整数1、小组学习活动:活动⑴把这张纸的4/5平均分成2份,每份是这张长方形纸的几分之几?活动⑵把这张纸的4/5平均分成3份,每份是这张长方形纸的几分之几?先独立动手操作,再在组内交流:通过折纸操作和计算,你发现了什么规律?你有什么问题要提出来?2、汇报学习结果:活动1学生甲,把4/5平均分成2份,就是把4个1/5平均分成2份,1份就是2个1/5,就是2/5;用算式表示是:4/5÷2=(4÷2)/5=2/5学生乙,把4/5平均分成2份,每份就是4/5的1/2,就是4/5×1/2;用算式表示是:4/5×1/2=4/10=2/5;学生丙,我发现了计算4/5÷2时,可以用分子4÷2作分子,分母不变;学生丁,我发现分数除以整数可能转化成乘法来计算,也就是乘以这个整数的倒数;活动2:学生甲,4要平均分成3份,不能直接分,我先找出4和3的最小公倍数12,把4分成12份,再把12份平均分成3份,算式可以用4/5÷3表示,4不能够被3整除,这道题我不知道怎样计算;学生乙,我的分法与前面的同学相同,不同的是:我在计算4/5÷3时,我把4/5÷3转化成4/5×1/3来计算,因为,把4/5平均分成3份,就是求4/5的1/3是多少。讨论:1、从折纸实验和计算来看,你发现计算分数除以整数可以怎样计算?2、整数可以为0吗?小结并板书:分数除以一个不等于0的整数,等于分数乘以这个整数的倒数。三、巩固与提高3、把3/5平均分成4份,每份是多少;什么数乘6等于3/20?4、如果a是一个不等于0的自然数,1/3÷a等于多少?1/a÷3等于多少?你能用一个具体的数检验上面的结果吗?四、作业练习板书设计:分数除法——分数除以整数例1每盒水果糖重100g,3盒重多少g?例2把一张纸的4/5平均分成2份,每份是这张纸100×3=300g→1/10×3=3/10g的几分之几?3盒水果糖重300g,每盒子重多少g?4/5÷2=(4÷2)/5=2/54/5÷2=4/5×1/2=2/5300÷3=100g→3/10÷3=1/10g如果把这张纸的4/5平均分成3份,每份是300g水果糖,100g装1盒,可以装几盒?这张纸的几分之几?300÷100=3(盒)→3/10÷1/10=3(盒)4/5÷3=4/5×1/3=4/15除以一个不等于0的整数,等于分数乘以这个整数的倒数。反思第二课时教学内容:一个数除以分数(例3)教学目标1、通过画线段图引导学生分析并归纳一个数除以分数的计算法则。2、能运用法则,正确迅速地计算分数除法。3、培养学生抽象思维能力。教学重难点:分析并归纳一个数除以分数的计算法则,理解一个数除以分数的算理教学过程一、复习导入1、计算:5/6÷103/5÷315/16÷2040/39÷26(说一说,你在计算中如何尽量避免错误的产生?在计算中要注意什么?)2、胜利路长1000米,东东走完全程用了20分钟,东东平均每分钟行多少米?(独立解答并且说明解题依据)3、2/3小时有()个1/3小时,1小时有()个1/3小时。二、新知探究:1、教学例3:小明2/3小时走了2km,小红5/12小时走了5/6km,谁走得快些?师:已知什么?生:已知小明和小红各自的时间和对应的路程。师:问题求什么?生:求谁走的快些。师:求谁走得快些?就是比...