电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

第一章至第四章部分课后习题答案VIP专享VIP免费

第一章至第四章部分课后习题答案_第1页
第一章至第四章部分课后习题答案_第2页
第一章至第四章部分课后习题答案_第3页
概率论与数理统计部分习题答案第一章概率论的基本概念1.写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一]1),n表小班人数(3)生产产品直到得到10件正品,记录生产产品的总件数。([一]2)S={10,11,12,………,n,………}(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。([一](3))S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,}6.在房间里有10人。分别佩代着从1号到10号的纪念章,任意选3人记录其纪念章的号码。(1)求最小的号码为5的概率。记“三人纪念章的最小号码为5”为事件A 10人中任选3人为一组:选法有种,且每种选法等可能。又事件A相当于:有一人号码为5,其余2人号码大于5。这种组合的种数有∴(2)求最大的号码为5的概率。记“三人中最大的号码为5”为事件B,同上10人中任选3人,选法有种,且每种选法等可能,又事件B相当于:有一人号码为5,其余2人号码小于5,选法有种8.在1500个产品中有400个次品,1100个正品,任意取200个。(1)求恰有90个次品的概率。记“恰有90个次品”为事件A 在1500个产品中任取200个,取法有种,每种取法等可能。200个产品恰有90个次品,取法有种∴(2)至少有2个次品的概率。记:A表“至少有2个次品”B0表“不含有次品”,B1表“只含有一个次品”,同上,200个产品不含次品,取法有种,200个产品含一个次品,取法有种 且B0,B1互不相容。∴9.从5双不同鞋子中任取4只,4只鞋子中至少有2只配成一双的概率是多少?记A表“4只全中至少有两支配成一对”则表“4只人不配对” 从10只中任取4只,取法有种,每种取法等可能。要4只都不配对,可在5双中任取4双,再在4双中的每一双里任取一只。取法有14.(1)已知。解一:注意.故有P(AB)=P(A)-P(A)=0.7-0.5=0.2。再由加法定理,P(A∪)=P(A)+P()-P(A)=0.7+0.6-0.5=0.8于是14.(2)。解:由由乘法公式,得由加法公式,得16.据以往资料表明,某一3口之家,患某种传染病的概率有以下规律:P(A)=P{孩子得病}=0.6,P(B|A)=P{母亲得病|孩子得病}=0.5,P(C|AB)=P{父亲得病|母亲及孩子得病}=0.4。求母亲及孩子得病但父亲未得病的概率。解:所求概率为P(AB)(注意:由于“母病”,“孩病”,“父病”都是随机事件,这里不是求P(|AB)P(AB)=P(A)=P(B|A)=0.6×0.5=0.3,P(|AB)=1-P(C|AB)=1-0.4=0.6.从而P(AB)=P(AB)·P(|AB)=0.3×0.6=0.18.17.已知10只晶体管中有2只次品,在其中取二次,每次随机地取一只,作不放回抽样,求下列事件的概率。(1)二只都是正品(记为事件A)法一:用组合做在10只中任取两只来组合,每一个组合看作一个基本结果,每种取法等可能。法二:用排列做在10只中任取两个来排列,每一个排列看作一个基本结果,每个排列等可能。法三:用事件的运算和概率计算法则来作。记A1,A2分别表第一、二次取得正品。(2)二只都是次品(记为事件B)法一:法二:法三:(3)一只是正品,一只是次品(记为事件C)法一:法二:法三:(4)第二次取出的是次品(记为事件D)法一:因为要注意第一、第二次的顺序。不能用组合作,法二:法三:18.某人忘记了电话号码的最后一个数字,因而随机的拨号,求他拨号不超过三次而接通所需的电话的概率是多少?如果已知最后一个数字是奇数,那么此概率是多少?记H表拨号不超过三次而能接通。Ai表第i次拨号能接通。注意:第一次拨号不通,第二拨号就不再拨这个号码。如果已知最后一个数字是奇数(记为事件B)问题变为在B已发生的条件下,求H再发生的概率。22.一学生接连参加同一课程的两次考试。第一次及格的概率为P,若第一次及格则第二次及格的概率也为P;若第一次不及格则第二次及格的概率为(1)若至少有一次及格则他能取得某种资格,求他取得该资格的概率。(2)若已知他第二次已经及格,求他第一次及格的概率。解:Ai={他第i次及格},i=1,2已知P(A1)=P(A2|A1)=P,(1)B...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

海纳百川+ 关注
实名认证
内容提供者

热爱教学事业,对互联网知识分享很感兴趣

最新文章

    确认删除?
    微信客服
    • 扫码咨询
    会员Q群
    • 会员专属群点击这里加入QQ群
    客服邮箱
    回到顶部