1/211机械能守恒与能量守恒(一)利用机械能守恒定律求解抛体运动问题案例1、从离水平地面高为H的A点以速度v0斜向上抛出一个质量为m的石块,已知v0与水平方向的夹角为θ,不计空气阻力,求:(1)石块所能达到的最大高度?H+h=H+gv2sin0(2)石块落地时的速度?大小为:vC=gHv220(二)利用机械能守恒定律解决弹力做功与弹性势能问题案例2、如图所示,一个质量为m的物体自高h处自由下落,落在一个劲度系数为k的轻质弹簧上。求:当物体速度达到最大值v时,弹簧对物体做的功为多少?变式训练:变式1、如图所示的弹性系统中,接触面光滑,O为弹簧自由伸长状态。第一次将物体从O点拉到A点释放,第二次将物体从O点拉到B点释放,物体返回到O点时,下列说法正确的是:()A、弹力做功一定相同B、到达O点时动能期一定相同C、物体在B点的弹性势能大D、系统的机械能不守恒正确答案选C。(三)利用机械能守恒定律求多个物体组成系统的运动速度问题案例1、如图所示,质量均为m的小球A、B、C,用两条长为l的细线相连,置于高为h的光滑水平桌面上,l>h,A球刚跨过桌边.若A球、B球相继下落着地后均不再反跳,则C球离开桌边时的速度大小是多少?2132123mvmghmgh解得:321ghv当B球刚要落地时,B、C机械能守恒。B、C有共同速度,设v222212212212mvmghmvmgh解得:352ghv可见:C球离开桌边时的速度大小是352ghv变式训练:变式1、半径为R的光滑圆柱体固定在地面上,两质量分别是M和m的小球用细线连接,正好处于水平直径的两端,从此位置释放小球,当m运动到最高点时,对球的压力恰好为零,求此时M的速度和两小球的质量之比。解析:对系统运用机械能守恒定律2)(2141vmMmgRRMg图2RMm图1图OA图2/21M在最高点时,Rvmmg2、联立解得:31mM变式2、如图所示,一辆小车静止在光滑的水平导轨上,一个小球用细绳悬挂在车上由图中位置释放(无初速度),则小球在下摆过程中()A.绳对小车的拉力不做功B.绳对小球的拉力做正功C.小球的合外力不做功D.绳对小球的拉力做负功正确答案:D(四)利用机械能守恒定律求解质量分布均匀的绳子、链子问题案例3如图3所示,在光滑水平桌面上,用手拉住长为L质量为M的铁链,使其1/3垂在桌边。松手后,铁链从桌边滑下,求铁链末端经过桌边时运动速度是过少?322gLv(五)利用机械能守恒定律求解连通器水流速问题案例5、粗细均匀的U型管两端开口,左端用活塞压着液体,此时两液面的高度差为h,液体的总长度为L,U型管的截面积为s,液体的密度为ρ。现在突然抽去活塞,(1)不计阻力影响,当两端液面相平时,液体运动的速度是多少?(2)若最终液体静止不动,则系统产生的内能是多少?变式训练:如图所示,容器A、B各有一个可以自由移动的活塞,活塞截面积分别为SA、SB,活塞下面是水,上面是空气,大气压恒为P0,A、B底部与带有阀门K的管道相连,整个装置与外界绝热原先,A中水面比B中高h,打开阀门,使A中水逐渐流向B中,最后达平衡,在这个过程中,大气压对水做功为______,水的内能增加为______(设水的密度为ρ)解:(1)0(2)水的内能增加EBABA2SSSSgh21(六)利用机械能守恒定律解决圆周运动的问题案例6、如图所示,半径为r,质量不计的圆盘与地面垂直,圆心处有一个垂直盘面的光滑水平固定轴O,在盘的最右边缘固定一个质量为m的小球A,在O点的正下方离O点r/2处固定一个质量也为m的小球B。放开盘让其自由转动,问:(1)A球转到最低点时的线速度是多少?222121)(21BAmvmvmgrmgr据圆周运动的知识可知:vA=2vB由上述二式可求得vA=5/4gr(2)在转动过程中半径OA向左偏离竖直方向的最大角度是多少?cossin2121mgrmgrmgr解得θ=sin-153=370图16AB3/21(七)用能量守恒相对滑SFQ解相对运动问题案例7、如图所示,小车的质量为M,后端放一质量为m的铁块,铁块与小车之间的动摩擦系数为,它们一起以速度v沿光滑地面向右运动,小车与右侧的墙壁发生碰撞且无能量损失,设小车足够长,则小车被弹回向左运动多远与铁块停止相对滑动?铁块在小车上相对于小车滑动多远的距离?命题解读:本题考查动能定理、能量守恒定律、动量守恒定律。两个物体相互摩擦而产生的热量Q(或说系统内能的增加量)等于物体之间滑...