直线与圆的方程教学目标1.直线与方程(1)在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素;(2)理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式;(3)根据确定直线位置的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系;2.圆与方程回顾确定圆的几何要素,在平面直角坐标系中,探索并掌握圆的标准方程与一般方程。命题走向直线方程考察的重点是直线方程的特征值(主要是直线的斜率、截距)有关问题,可与三角知识联系;圆的方程,从轨迹角度讲,可以成为解答题,尤其是参数问题,在对参数的讨论中确定圆的方程。预测2017年对本讲的考察是:(1)2道选择或填空,解答题多与其他知识联合考察,本讲对于数形结合思想的考察也会是一个出题方向;(2)热点问题是直线的倾斜角和斜率、直线的几种方程形式和求圆的方程。教学准备多媒体课件教学过程要点精讲1.倾斜角:一条直线L向上的方向与X轴的正方向所成的最小正角,叫做直线的倾斜角,范围为,0。2.斜率:当直线的倾斜角不是900时,则称其正切值为该直线的斜率,即k=tan;当直线的倾斜角等于900时,直线的斜率不存在。过两点p1(x1,y1),p2(x2,y2)(x1≠x2)的直线的斜率公式:k=tan1212xxyy(若x1=x2,则直线p1p2的斜率不存在,此时直线的倾斜角为900)。4.直线方程的五种形式确定直线方程需要有两个互相独立的条件。确定直线方程的形式很多,但必须注意各种形式的直线方程的适用范围。名称方程说明适用条件1斜截式y=kx+bk——斜率b——纵截距倾斜角为90°的直线不能用此式点斜式y-y0=k(x-x0)(x0,y0)——直线上已知点,k——斜率倾斜角为90°的直线不能用此式两点式121yyyy=121xxxx(x1,y1),(x2,y2)是直线上两个已知点与两坐标轴平行的直线不能用此式截距式ax+by=1a——直线的横截距b——直线的纵截距过(0,0)及与两坐标轴平行的直线不能用此式一般式Ax+By+C=0BA,AC,BC分别为斜率、横截距和纵截距A、B不能同时为零直线的点斜式与斜截式不能表示斜率不存在(垂直于x轴)的直线;两点式不能表示平行或重合两坐标轴的直线;截距式不能表示平行或重合两坐标轴的直线及过原点的直线。5.圆的方程圆心为),(baC,半径为r的圆的标准方程为:)0()()(222rrbyax。特殊地,当0ba时,圆心在原点的圆的方程为:222ryx。圆的一般方程022FEyDxyx,圆心为点)2,2(ED,半径2422FEDr,其中0422FED。二元二次方程022FEyDxCyBxyAx,表示圆的方程的充要条件是:①、2x项2y项的系数相同且不为0,即0CA;②、没有xy项,即B=0;③、0422AFED。典例解析2题型1:直线的倾斜角例1.图中的直线l1、l2、l3的斜率分别为k1、k2、k3,则()A.k1<k2<k3B.k3<k1<k2C.k3<k2<k1D.k1<k3<k2答案:D解析:直线l1的倾斜角α1是钝角,故k1<0,直线l2与l3的倾斜角α2、α3均为锐角,且α2>α3,所以k2>k3>0,因此k2>k3>k1,故应选D。点评:本题重点考查直线的倾斜角、斜率的关系,考查数形结合的能力。例2.过点P(2,1)作直线分别交x轴、y轴的正半轴于A、B两点,求的值最小时直线的方程。解析:依题意作图,设∠BAO=,则,,当,即时的值最小,此时直线的倾斜角为135°,∴斜率。故直线的方程为,即。点评:求直线方程是解析几何的基础,也是重要的题型。解这类题除用到有关概念和直线方程的五种形式外,还要用到一些技巧。题型2:斜率公式及应用例3.(1)设实数x,y满足,则的最大值是___________。(2)已知过原点O的一条直线与函数y=log8x的图象交于A、B两点,分别过点A、B作y轴的平行线与函数y=log2x的图象交于C、D两点。(1)证明点C、D和原点O在同一条直线上。3图(2)当BC平行于x轴时,求点A的坐标。解析:(1)如图,实数x,y满足的区域为图中阴影部分(包括边界),而表示点(x,y)与原点连线的斜率,则直线AO的斜率最大,其中A点坐标为,此时,所以的最大值是。点评:本题还可以设,则,斜率k的最大值即为的最大...