初中数学口诀有理数的加法运算:同号相加一边倒;异号相加“大”减“小”,符号跟着大的跑【“大”减“小”是指绝对值的大小】。绝对值相等“零”正好。合并同类项:合并同类项,法则不能忘,只求系数和,字母、指数不变样。去括号、添括号法则:去括号和添括号,关键看符号,括号前面是正号,去、添括号不变号;括号前面是负号,去、添括号都变号。一元一次方程:已知未知要分离,分离方法就是移,加减移项要变号,乘除移了要颠倒。恒等变换:两个数字来相减,互换位置最常见,正负只看其指数,奇数变号偶不变。=;平方差公式:平方差公式有两项,符号相反莫要忘;首加尾乘首减尾,莫与完全平方相混淆完全平方公式:完全平方有三项,首尾符号是同乡;首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央。因式分解:一提(公因式)、二套(公式)、三分组。细看几项不离谱:两项只用平方差;三项十字相乘法、方法熟练不马虎;四项仔细看清楚,若有三个平方数(项),就用一三来分组,否则二二去分组五项、六项更多项,二三、三三试分组;以上若都行不通,拆项、添项合理用。“代入”口决:挖去字母换上数(式),数字、字母都保留;换上分数或负数,给它带上小括弧,原括弧内出(现)括弧,逐级向下变括弧(小中大)单项式运算:加、减、乘、除、乘(开)方,三级运算分得清,系数进行同级(运)算,指数运算降级(进)行。一元一次不等式解题的一般步骤:去分母、去括号,移项时候要变号,同类项、合并好,再把系数来除掉,两边除(以)负数时,不等号改向莫忘掉。一元一次不等式组的解集:大大取较大;小小取较小;小大、大小取中间;大小,小大无处找。一元二次不等式、一元一次绝对值不等式的解集:大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。分式混合运算法则:分式四则混合算,莫忘顺序乘、除、加、减;乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解需在先,分子分母相约分,然后再行运算;加减分母需相同,异母运算是关键;找出最简公分母,通分计算不算难;变号必须有两处,结果要求化最简。分式方程的解法步骤:同乘最简公分母,化成整式写清楚;求得解后须验根,原(根)留、增(根)舍别含糊。最简根式的条件:最简根式三条件。1是:号内不把分母含;2是:幂指(数)根指(数)要互质;3是幂指比根指小一点。特殊点坐标特征:坐标平面点,前是横来后是纵;、、、四个象限分前后;轴上为0,轴上为0。象限角的平分线:象限角的平分线,坐标表示有特点,一、三象限横纵等;二、四象限横纵反。平行某轴的直线:平行某轴的直线,点的坐标有讲究,直线平行轴,纵坐标相等横不同;直线平行于轴,横坐标相等纵不同。对称点坐标:对称点坐标要记牢,相反数位置莫混淆,轴对称相反;轴对称相反;原点对称最好记,横纵坐标均变号。自变量的取值范围:分式分母不为零;偶次根下负不行;零次幂底数不为零;整式、奇次根全能行。函数图像的移动规律:若一次函数解析式写成、二次函数的解析式写成的形式,则可以用以下口诀“左右平移在括号,上下平移在末梢;左加右减须牢记,上加下减要记好”。一次函数口诀:一次函数是直线,图像经过三象限;正比例函数更简单,经过原点一直线;两个系数与,作用之大莫小看,是斜率定夹角,与轴来相见;为正来右上斜,增减增减;为负来右下延,变化规律正好反;的绝对值越大,图象离“横”就越远。二次函数口诀:二次函数抛物线,图象对称是关键;开口、顶点和交点,它们确定图象显;开口、大小由断;与轴来相见;的符号较特别,符号与相关联;顶点位置先找见,轴作为参考线,左加右减中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值现;若求对称轴位置,符号反;一般式、顶点式、交点式,不同表达能转换。反比例函数口诀:反比例函数有特点,双曲线相背离的远;为正数时,图象在一、三;为负数时,图象在二、四;图象在一、三,函数减,两个分支分别减。图象在二、四,函数变化正好反;两个分支分别看,双曲线越长越近轴,但是永远不相连。巧记三角函数口诀:初中所学三角函数有正弦、余弦、正...