电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

圆锥曲线轨迹方程经典例题VIP免费

圆锥曲线轨迹方程经典例题_第1页
圆锥曲线轨迹方程经典例题_第2页
圆锥曲线轨迹方程经典例题_第3页
轨迹方程经典例题一、轨迹为圆:1、长为2a的线段的两个端点在轴和轴上移动,求线段AB的中点M的轨迹方程:已知M与两个定点(0,0),A(3,0)的距离之比为,求点M的轨迹方程;2、线段AB的端点B的坐标是(4,3),端点A在圆上运动,求AB的中点M的轨迹。(2013新课标2卷文20)在平面直角坐标系中,已知圆在轴上截得线段长为,在轴上截得线段长为。(1)求圆心的的轨迹方程;(2)若点到直线的距离为,求圆的方程。3如图所示,已知P(4,0)是圆x2+y2=36内的一点,A、B是圆上两动点,且满足∠APB=90°,求矩形APBQ的顶点Q的轨迹方程.4在平面直角坐标系中,点,直线.设圆的半径为,圆心在上.(1)若圆心也在直线上,过点作圆的切线,求切线的方程;(2)若圆上存在点,使,求圆心的横坐标的取值范围.5(2013陕西卷理20)已知动圆过定点,且在轴上截得弦的长为8.(1)求动圆圆心的轨迹的方程;(2)已知点,设不垂直于轴的直线与轨迹交于不同的两点,若轴是的角平分线,证明直线过定点。二、椭圆类型:3、定义法:点M(,)与定点F(2,0)的距离和它到定直线的距离之比为,求点M的轨迹方程.4、圆锥曲线第一定义:一个动圆与圆外切,同时与圆内切,求动圆的圆心轨迹方程。5、圆锥曲线第一定义:点M()圆上的一个动点,点(1,0)为定点。线段的垂直平分线与相交于点Q(,),求点Q的轨MBAQF1F2MMF1F2迹方程;(注意点(1,0)在圆内)6、其他形式:设点A,B的坐标分别是(-5,0),(5,0),直线AM,BM相交于点M,且他们的斜率的乘积为,求点M的轨迹方程:(是一个椭圆)(讨论当他们的斜率的乘积为时可以得到双曲线)(2013新课标1卷20)已知圆,圆,动圆与圆外切并且与圆内切,圆心的轨迹为曲线。(1)求的方程;(2)是与圆,圆都相切的一条直线,与曲线交于两点,当圆的半径最长时,求(2013陕西卷文20)已知动点到直线的距离是它到点的距离的倍。(1)求动点的轨迹的方程(2)过点的直线与轨迹交于两点,若是的中点,求直线的斜率。三、双曲线类型:8、圆锥曲线第一定义:点M()圆上的一个动点,点(1,0)为定点。线段的垂直平分线与相交于点Q(,),求点Q的轨迹方程;(注意点(1,0)在圆外)定义法:点M(,)与定点F(5,0)的距离和它到定直线的距离之比为,求点M的轨迹方程.(圆锥曲线第二定义)四、抛物线类型:10、定义法:点M(,)与定点F(2,0)的距离和它到定直线的距离相等,求点M的轨迹方程。(或:点M(,)与定点F(2,0)的距离比它到定直线的距离小1,求点M的轨迹方程。)(2013陕西卷文20)已知动点到直线的距离是它到点的距离的倍。(1)求动点的轨迹的方程(2)过点的直线与轨迹交于两点,若是的中点,求直线的斜率已知三点,,,曲线上任意一点满足。QF1F2M(1)求曲线的方程;)在直角坐标系xOy中,曲线C1的点均在C2:(x-5)2+y2=9外,且对C1上任意一点M,M到直线x=﹣2的距离等于该点与圆C2上点的距离的最小值.(Ⅰ)求曲线C1的方程;(湖北)设A是单位圆x2+y2=1上的任意一点,i是过点A与x轴垂直的直线,D是直线i与x轴的交点,点M在直线l上,且满足丨DM丨=m丨DA丨(m>0,且m≠1)。当点A在圆上运动时,记点M的轨迹为曲线C。(I)求曲线C的方程,判断曲线C为何种圆锥曲线,并求焦点坐标;(辽宁)如图,椭圆:,a,b为常数),动圆,。点分别为的左,右顶点,与相交于A,B,C,D四点。(Ⅰ)求直线与直线交点M的轨迹方程;(四川)如图,动点到两定点、构成,且,设动点的轨迹为。(Ⅰ)求轨迹的方程;(Ⅱ)设直线与轴交于点,与轨迹相交于点,且,求的取值范围。1.(★★★★)已知椭圆的焦点是F1、F2,P是椭圆上的一个动点,如果延长F1P到Q,使得|PQ|=|PF2|,那么动点Q的轨迹是()A.圆B.椭圆C.双曲线的一支D.抛物线2.(★★★★)设A1、A2是椭圆=1的长轴两个端点,P1、P2是垂直于A1A2的弦的端点,则直线A1P1与A2P2交点的轨迹方程为()A.B.C.D.二、填空题3.(★★★★)△ABC中,A为动点,B、C为定点,B(-,0),C(,0),且满足条件sinC-sinB=sinA,则动点A的轨迹方程为_________.4.(★★★★)高为5m和3m的两根旗杆竖在水平地面上,且相距10m,如果把两旗杆底部的坐标分别确定为A(-5,0)、B(5,0),则地面观测两旗杆顶端...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部