§8.圆锥曲线方程知识要点一、椭圆方程.1.椭圆方程的第一定义:为端点的线段以无轨迹方程为椭圆21212121212121,2,2,2FFFFaPFPFFFaPFPFFFaPFPF⑴①椭圆的标准方程:i.中心在原点,焦点在x轴上:)0(12222babyax.ii.中心在原点,焦点在y轴上:)0(12222babxay.②一般方程:)0,0(122BAByAx.③椭圆的标准方程:12222byax的参数方程为sincosbyax(一象限应是属于20).⑵①顶点:),0)(0,(ba或)0,)(,0(ba.②轴:对称轴:x轴,y轴;长轴长a2,短轴长b2.③焦点:)0,)(0,(cc或),0)(,0(cc.④焦距:2221,2baccFF.⑤准线:cax2或cay2.⑥离心率:)10(eace.⑦焦点半径:i.设),(00yxP为椭圆)0(12222babyax上的一点,21,FF为左、右焦点,则ii.设),(00yxP为椭圆)0(12222baaybx上的一点,21,FF为上、下焦点,则由椭圆第二定义可知:)0()(),0()(0002200201xaexxcaepFxexacaxepF归结起来为“左加右减”.注意:椭圆参数方程的推导:得)sin,cos(baN方程的轨迹为椭圆.⑧通径:垂直于x轴且过焦点的弦叫做通经.坐标:),(2222abcabd和),(2abc⑶共离心率的椭圆系的方程:椭圆)0(12222babyax的离心率是)(22bacace,方程ttbyax(2222是大于0的参数,)0ba的离心率也是ace我们称此方程为共离心率的椭圆系方程.⑸若P是椭圆:12222byax上的点.21,FF为焦点,若21PFF,则21FPF的面积为2tan2b(用余弦定理与aPFPF221可得).若是双曲线,则面积为2cot2b.二、双曲线方程.1.双曲线的第一定义:的一个端点的一条射线以无轨迹方程为双曲线21212121212121,222FFFFaPFPFFFaPFPFFFaPFPF⑴①双曲线标准方程:)0,(1),0,(122222222babxaybabyax.一般方程:)0(122ACCyAx.⑵①i.焦点在x轴上:顶点:)0,(),0,(aa焦点:)0,(),0,(cc准线方程cax2渐近线方程:0byax或02222byaxii.焦点在y轴上:顶点:),0(),,0(aa.焦点:),0(),,0(cc.准线方程:cay2.渐近线方程:0bxay或02222bxay,参数方程:tansecbyax或sectanaybx.②轴yx,为对称轴,实轴长为2a,虚轴长为2b,焦距2c.③离心率ace.④准线距ca22(两准线的距离);通径ab22.⑤参数关系acebac,222.⑥焦点半径公式:对于双曲线方程12222byax(21,FF分别为双曲线的左、右焦点或分别为双曲线的上下焦点)“长加短减”原则:(与椭圆焦半径不同,椭圆焦半径要带符号计算,而双曲线不带符号)aexMFaexMF0201构成满足aMFMF221aexFMaexFM0201aeyFMaeyFMaeyMFaeyMF02010201⑶等轴双曲线:双曲线222ayx称为等轴双曲线,其渐近线方程为xy,离心率2e.⑷共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线.2222byax与2222byax互为共轭双曲线,它们具有共同的渐近线:02222byax.⑸共渐近线的双曲线系方程:)0(2222byax的渐近线方程为02222byax如果双曲线的渐近线为0byax时,它的双曲线方程可设为)0(2222byax.例如:若双曲线一条渐近线为xy21且过)21,3(p,求双曲线的方程?解:令双曲线的方程为:)0(422yx,代入)21,3(得12822yx.⑹直线与双曲线的位置关系:区域①:无切线,2条与渐近线平行的直线,合计2条;区域②:即定点在双曲线上,1条切线,2条与渐近线平行的直线,合计3条;区域③:2条切线,2条与渐近线平行的直线,合计4条;区域④:即定点在渐近线上且非原点,1条切线,1条与渐近线平行的直线,合计2条;区域⑤:即过原点,无切线,无与渐近线平行的直线.小结:1.过定点作直线与双曲线有且仅有一个交点,可以作出的直线数目可能有0、2、3、4条.2.若直线与双曲线一支有交点,交点为二个时,求确定直线的斜率可用代入”“法与渐近线求交和两根之和与两根之积同号.⑺若P在双曲线12222byax,...