数列专题:递推公式求通项公式题型一:⑴.1nnaapnq(差后等差数列)例1.数列{}na中,11a,121(2)nnaann,求na⑵1nnnaab(差后等比数列)例2.已知数列{an}中,a1=1,且an=an-1+3n-1,求{an}的通项公式.题型二:1na=na+m(相邻两项满足线性关系)例.数列na满足1na=2na+3,a1=1求通项.解:(1na+)=2(na+)∴=3∴1na+3=2(na+3)即{na+3}成G.P公比q=2首项a1+3=4∴na+3=421n∴na=12n-3练习:在数列{an}中,a1=2,且an+1=212na,求{an}的通项公式.解:an+12=21an2+21∴an+12-1=21(an2-1)∴{an+12-1}是以3为首项,公比为21的等差数列.∴an+12-1=3×121n,即an=1231n题型三:1na=na+qpn用心爱心专心1例:数列na满足1na=4na+3n-2,a1=1,求通项.解法一:2na=41na+3(n+1)-21na=4na+3n-2因此有2na-1na=4(1na-na)+3,令nc=1na-na,则1nc=4nc+31nc+=4(nc+)+3∴=11nc+1=4(nc+1),C1+1=a2-a1+1=5{nc+1}成等比数列1nC=514n,nc=514n-1∴1na-na=514n-1 1na-na=3na+3n-2即514n-1=3na+3n-2∴na=n1514n33。解法二:设)(4)1(1nanann3424解得31,1∴)31(431)1(1nanann∴143531nnna∴314351nann题型四:1na=na+nb例1:数列na满足1na=3na+2n,a1=1,求通项.解法一:1131,2222nnnnaa令nc=2nna,C1=121nc+=32(nc+)∴=1∴{nc+1}成等比数列,C1+1=12+1=32,1nC=32n用心爱心专心2∴nc=32n-1na=2nnc=3n-2n解法二:设)2(3211nnnnaa1231∴)2(3211nnnnaa∴nnna32∴nnna23例2:(05江西文)数列na的前n项和ns满足ns-n2s=3n112(n3),且1S=1,2S=-32,求na通项公式.nn2SS=nn1SS+n1n2SS=nn1aa=3n11212nna12+n1n1a12=3,令nb=nna12nb-2n1b=-6nb+=2(n1b+),2-=-6=-6nb-6=2(n1b-6) 1b=-21a=-2∴1b-6=-8,nb-6=-8•n12=-n22∴nb=6-n22na=n12(6-n22)=3n1n112-4n1即na=n1n1143n2k12134n2k2=.题型五:1na=f(n)na用心爱心专心3由na=121121nnnnaaaaaaaf(n-1)f(n-2)┈f(1)a1即“累积法”求na例:数列na满足a1=1,na=1212(1)naana(n2)求na的通项公式.解:na=1212(1)naana1na=1212(1)naana+nna∴1na-na=nna,1nnaa=n+1,注意n2且a1=1,∴na=13122nnnnaaaaaa=n(n-1)┈3∴2na=!2n(n2)∴na=!2211nnn题型六:2na=p1na+qna(p、q均为常数)2na=p1na+qna2na-1na=(1na-na)∴pq解出、因此{1na-na}是等比数列例1:a1=1,a2=532na=531na-23na,求数列{na}的通项公式na。解:2na-1na=(1na-na)5323解得:=1、=232na-1na=23(1na-na),a2-a1=23∴na-1na=123n∴na=(用心爱心专心4na-1na)+(1na-2na)+┈+(a2-a1)+a1=123n+223n+┈+23+1=3-123nn.∴na=3-123nn题型七:连续两项之间不满足线性关系的。例1.(倒数法)已知数列{an}中,a1=53,an+1=12nnaa,求{an}的通项公式.解:211211nnnnaaaa∴na1是以35为首项,公差为2的等差数列,即351na+2(n-1)=316n∴an=163n例2:(对数法)数列na满足a1=2,21na=na+1na,求na的通项。解:1na=212nnaa,且21na>21na>1∴na>1恒成立。1na+1=212nnaa,1na-1=212nnaa...