第2课时排列数的应用学习目标核心素养1.进一步理解排列的概念,掌握一些排列问题的常用解题方法.(重点)2.能应用排列知识解决简单的实际问题.(难点)1.通过排列知识解决实际问题,提升逻辑推理的素养.2.借助排列数公式计算,提升数学运算的素养.无限制条件的排列问题【例1】(1)有5本不同的书,从中选3本送给3名同学,每人各1本,共有多少种不同的送法?(2)有5种不同的书,要买3本送给3名同学,每人各1本,共有多少种不同的送法?[思路点拨](1)从5本不同的书中选出3本分别送给3名同学,各人得到的书不同,属于求排列数问题;(2)给每人的书均可以从5种不同的书中任选1本,各人得到哪本书相互之间没有联系,要用分步乘法计数原理进行计算.[解](1)从5本不同的书中选出3本分别送给3名同学,对应于从5个不同元素中任取3个元素的一个排列,因此不同送法的种数是A=5×4×3=60,所以共有60种不同的送法.(2)由于有5种不同的书,送给每个同学的每本书都有5种不同的选购方法,因此送给3名同学,每人各1本书的不同方法种数是5×5×5=125,所以共有125种不同的送法.1.没有限制的排列问题,即对所排列的元素或所排列的位置没有特别的限制,这一类问题相对简单,分清元素和位置即可.2.对于不属于排列的计数问题,注意利用计数原理求解.[跟进训练]1.(1)将3张电影票分给10人中的3人,每人1张,则共有________种不同的分法.(2)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,不同的选法共有________种.(1)720(2)60[(1)问题相当于从10张电影票中选出3张排列起来,这是一个排列问题.故不同分法的种数为A=10×9×8=720.(2)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,应有A=5×4×3=60种选法.]排队问题角度一元素“相邻”与“不相邻”问题【例2】3名男生、4名女生按照不同的要求排队,求不同的排队方法的种数.(1)全体站成一排,男、女各站在一起;(2)全体站成一排,男生必须站在一起;(3)全体站成一排,男生不能站在一起;(4)全体站成一排,男、女各不相邻.[解](1)男生必须站在一起是男生的全排列,有A种排法;女生必须站在一起是女生的全排列,有A种排法;全体男生、女生各视为一个元素,有A种排法.由分步乘法计数原理知,共有A·A·A=288种排队方法.(2)三个男生全排列有A种方法,把所有男生视为一个元素,与4名女生组成5个元素全排列,有A种排法.故有A·A=720种排队方法.(3)先安排女生,共有A种排法;男生在4个女生隔成的五个空中安排,共有A种排法,故共有A·A=1440种排法.(4)排好男生后让女生插空,共有A·A=144种排法.“相邻”与“不相邻”问题的解决方法处理元素“相邻”“不相邻”问题应遵循“先整体,后局部”的原则.元素相邻问题,一般用“捆绑法”,先把相邻的若干个元素“捆绑”为一个大元素与其余元素全排列,然后再松绑,将这若干个元素内部全排列.元素不相邻问题,一般用“插空法”,先将不相邻元素以外的“普通”元素全排列,然后在“普通”元素之间及两端插入不相邻元素.[跟进训练]2.5人站成一排,甲、乙两人之间恰有1人的不同站法的种数为()A.18B.24C.36D.48C[5人站成一排,甲、乙两人之间恰有1人的不同站法有3A×A=36(种).]角度二元素“在”与“不在”问题【例3】六人按下列要求站一横排,分别有多少种不同的站法?(1)甲不站两端;(2)甲、乙站在两端;(3)甲不站左端,乙不站右端.[解](1)法一:要使甲不站在两端,可先让甲在中间4个位置上任选1个,有A种站法,然后其余5人在另外5个位置上作全排列有A种站法,根据分步乘法计数原理,共有站法A·A=480种.法二:由于甲不站两端,这两个位置只能从其余5个人中选2个人站,有A种站法,然后其余4人有A种站法,根据分步乘法计数原理,共有站法A·A=480种.法三:若对甲没有限制条件共有A种站法,甲在两端共有2A种站法,从总数中减去这两种情况的排列数,即得所求的站法数,共有A-2A=480种.(2)首先考虑特殊元素,甲、乙先站两端,有A种,再让其他4人在中间位置作全排列,有A种,根据分步乘法计数原理,共有A·A=48种站法.(3)法一:甲...