电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学 第3章 排列、组合与二项式定理 3.1 排列与组合 3.1.1 第2课时 基本计数原理的应用教案 新人教B版选择性必修第二册-新人教B版高二选择性必修第二册数学教案VIP免费

高中数学 第3章 排列、组合与二项式定理 3.1 排列与组合 3.1.1 第2课时 基本计数原理的应用教案 新人教B版选择性必修第二册-新人教B版高二选择性必修第二册数学教案_第1页
高中数学 第3章 排列、组合与二项式定理 3.1 排列与组合 3.1.1 第2课时 基本计数原理的应用教案 新人教B版选择性必修第二册-新人教B版高二选择性必修第二册数学教案_第2页
高中数学 第3章 排列、组合与二项式定理 3.1 排列与组合 3.1.1 第2课时 基本计数原理的应用教案 新人教B版选择性必修第二册-新人教B版高二选择性必修第二册数学教案_第3页
第2课时基本计数原理的应用学习目标核心素养1.熟练应用两个计数原理.(重点)2.能运用两个计数原理解决一些综合性的问题.(难点)1.借助两个计数原理解题,提升数学运算的素养.2.通过合理分类或分步解决问题,提升逻辑推理的素养.组数问题【例1】(教材P6例2改编)用0,1,2,3,4,5可以组成多少个无重复数字的:(1)银行存折的四位密码?(2)四位整数?(3)比2000大的四位偶数?[思路点拨](1)用分步乘法计数原理求解(1)问;(2)0不能作首位,优先排首位,用分步乘法计数原理求解;(3)可以按个位是0,2,4分三类,也可以按首位是2,3,4,5分四类解决,也可以用间接法求解.[解](1)分步解决.第一步:选取左边第一个位置上的数字,有6种选取方法;第二步:选取左边第二个位置上的数字,有5种选取方法;第三步:选取左边第三个位置上的数字,有4种选取方法;第四步:选取左边第四个位置上的数字,有3种选取方法.由分步乘法计数原理知,可组成不同的四位密码共有6×5×4×3=360(个).(2)分步解决.第一步:首位数字有5种选取方法;第二步:百位数字有5种选取方法;第三步:十位数字有4种选取方法;第四步:个位数字有3种选取方法.由分步乘法计数原理知,可组成四位整数有5×5×4×3=300(个).(3)法一:按末位是0,2,4分为三类:第一类:末位是0的有4×4×3=48个;第二类:末位是2的有3×4×3=36个;第三类:末位是4的有3×4×3=36个.则由分类加法计数原理有N=48+36+36=120(个).法二:按千位是2,3,4,5分四类:第一类:千位是2的有2×4×3=24(个);第二类:千位是3的有3×4×3=36(个);第三类:千位是4的有2×4×3=24(个);第四类:千位是5的有3×4×3=36(个).则由分类加法计数原理有N=24+36+24+36=120(个).法三:用0,1,2,3,4,5可以组成的无重复数字的四位偶数分两类:第一类:末位是0的有5×4×3=60(个);第二类:末位是2或4的有2×4×4×3=96(个).共有60+96=156(个).其中比2000小的有:千位是1的共有3×4×3=36(个),所以符合条件的四位偶数共有156-36=120(个).1.对于组数问题,一般按特殊位置(一般是末位和首位)由谁占领分类,分类中再按特殊位置(或者特殊元素)优先的方法分步完成;如果正面分类较多,可采用间接法从反面求解.2.解决组数问题,应特别注意其限制条件,有些条件是隐藏的,要善于挖掘.排数时,要注意特殊元素、特殊位置优先的原则.[跟进训练]1.四张卡片上分别标有数字“2”、“0”、“1”、“1”,则由这四张卡片可组成不同的四位数的个数为()A.6B.9C.12D.24B[法一:(列举法)根据0的位置分类:第一类:0在个位有:2110,1210,1120,共3个.第二类:0在十位有:2101,1201,1102,共3个.第三类:0在百位有:2011,1021,1012,共3个.故共有3+3+3=9个不同的四位数,故选B.法二:(树形图法)如图,可知这样的数共有9个,故选B.]抽取(分配)问题【例2】(1)高三年级的三个班到甲、乙、丙、丁四个工厂进行社会实践,其中工厂甲必须有班级去,每班去何工厂可自由选择,则不同的分配方案有()A.16种B.18种C.37种D.48种(2)甲、乙、丙、丁四人各写一张贺卡,放在一起,再各取一张不是自己的贺卡,则不同取法的种数有________种.[思路点拨](1)由于去甲工厂的班级分配情况较多,而其对立面较少,可考虑间接法求解.(2)先让一人去抽,然后再让被抽到贺卡所写人去抽.(1)C(2)9[(1)高三年级的三个班到甲、乙、丙、丁四个工厂进行社会实践有43种不同的分配方案,若三个班都不去工厂甲则有33种不同的分配方案.则满足条件的不同的分配方案有43-33=37(种).故选C.(2)不妨由甲先来取,共3种取法,而甲取到谁的将由谁在甲取后第二个来取,共3种取法,余下来的人,都只有1种选择,所以不同取法共有3×3×1×1=9(种).]求解抽取(分配)问题的方法1.当涉及对象数目不大时,一般选用列举法、树状图法、框图法或者图表法.2.当涉及对象数目很大时,一般有两种方法:①直接法:直接使用分类加法计数原理或分步乘法计数原理.②间接法:去掉限制条件,计算所有的抽取方法数,然后减去所有不符合条件的抽取方法数即可.[跟进训练]2.3个不同的小球放入5个不同...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

;绿洲书城+ 关注
实名认证
内容提供者

从事历史教学,热爱教育,高度负责。

最新文章

确认删除?
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部