1.3.2“杨辉三角”与二项式系数的性质教学目标知识与技能1.利用二项式定理得出二项式系数的一些性质;2.能运用二项式系数的性质解决一些简单问题.过程与方法1.熟知二项式系数的对称性、单调性、最大项及所有二项式系数之和等结论;2.熟练运用赋值法求一些代数式的值.情感、态度与价值观1.培养学生观察、归纳、发现的能力以及分析问题与解决问题的能力.2.通过学习“杨辉三角”的有关知识,了解我们国家悠久的文化传统,陶冶学生的爱国主义情操,进一步提升学生学好数学用好数学的决心和勇气,提升学生学习数学的兴趣.重点难点教学重点:了解“杨辉三角”的结构与规律,掌握二项式系数的一些性质,掌握赋值法.教学难点:二项式系数性质的得到和证明,利用二项式系数的性质解决有关问题.\s\up7()前面我们学习了二项式定理,请回顾:(1)(a+b)n=__________________(n∈N*),这个公式表示的定理叫做二项式定理,公式右边的多项式叫做(a+b)n的__________________,其中C(r=0,1,2,…,n)叫做____________,通项是指展开式的第________________项,展开式共有______________项.(2)什么是二项式系数?什么是系数?活动设计:学生先独立回忆,然后独立发言,其他同学进行补充,必要时可以看书.活动结果:(答案展示)(1)(a+b)n=Can+Can-1b+Can-2b2+…+Can-rbr+…+Cbn(n∈N)、展开式、二项式系数、r+1、n+1.(2)二项式系数是C,系数是变量前的常数.设计意图:通过复习二项式定理的有关知识,为发现杨辉三角的有关性质打下基础,形成知识储备,引出本节课要研究的内容.提出问题:计算(a+b)n展开式的二项式系数并填入下表n展开式的二项式系数1234567活动设计:通过学案或者投影展示表格,学生填空,学生之间可以交流,教师指导.活动成果:n展开式的二项式系数11121213133141464151510105161615201561设计意图:当二项式的次数不大时,可借助它直接写出各项的二项式系数.通过计算填表,让学生发现其中的规律.提出问题:当表示形式为“三角形”时,该表格有什么规律?活动设计:学生自主解决,自由发言,自主探究.活动成果:(这个表在我国南宋数学家杨辉在1261年所著的《详解九章算法》一书中就出现了,称为杨辉三角.但是在欧洲,这个表被认为是法国数学家帕斯卡首先发现的,他们把这个表称为帕斯卡三角.这就是说,杨辉三角的发现要比欧洲早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的)设计意图:为了使学生建立“杨辉三角”与二项式系数的性质之间关系的直觉,要求学生填表,观察表格,探索规律,体会“表示形式的变化有时能帮助我们发现规律”这句话的深刻哲理与方法,由学生自己说说其中的规律.提出问题1:观察杨辉三角的每一行,正数第1个数与倒数第1个数,正数第2个数与倒数第2个数,正数第3个数与倒数第3个数,…它们有什么样的等量关系?你能把你的想法概括成一句话吗?活动设计:通过展示表格与杨辉三角,让学生自己观察,发现结论,踊跃发言,勇于探索.活动成果:正数第1个数与倒数第1个数相等,正数第2个数与倒数第2个数相等,正数第3个数与倒数第3个数相等,…(板书)二项式系数的性质(1)对称性:在二项展开式中,与首末两端“等距”的两项的二项式系数相等,即C=C.设计意图:引导学生猜想,猜想是发现的开始.通过杨辉三角得到“对称性”,进一步加深学生对二项式系数性质的掌握,这条性质实际上是组合数的一个性质.提出问题2:观察杨辉三角的相邻两行,看看下一行中除了“1”之外的数与上一行中的数有什么关系?活动设计:学生独立思考,自由发言,可以小组讨论.活动成果:表中任一不为1的数都等于它肩上的两个数的和,即(板书)(2)C=C+C.设计意图:通过新发现(杨辉三角),重新验证旧知识,能够提升学生对此公式的理解与掌握,加深学生对二项式系数性质的理解,能够在最大程度上提升学生的认知水平,这条性质实际上是组合数的另外一个性质.提出问题3:观察每一行中的二项式系数的大小变化情况,有单调性吗?有最值吗?活动设计:学生未必一下能说清楚,尽量鼓励学生说,让他们积极参与.教师始终是引导者,学生...