原命题pq若则否命题┐p┐q若则逆命题qp若则逆否命题┐q┐p若则互为逆否互逆否互为逆否互互逆否互第二课时1.1.2命题及其关系(二)教学要求:进一步理解命题的概念,了解命题的逆命题、否命题与逆否命题,会分析四种命题的相互关系.教学重点:四种命题的概念及相互关系.教学难点:四种命题的相互关系.教学过程:一、复习准备:指出下列命题中的条件与结论,并判断真假:(1)矩形的对角线互相垂直且平分;(2)函数有两个零点.二、讲授新课:1.教学四种命题的概念:原命题逆命题否命题逆否命题若,则若,则若,则若,则①写出命题“菱形的对角线互相垂直”的逆命题、否命题及逆否命题,并判断它们的真假.(师生共析学生说出答案教师点评)②例1:写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假:(1)同位角相等,两直线平行;(2)正弦函数是周期函数;(3)线段垂直平分线上的点与这条线段两个端点的距离相等.(学生自练个别回答教师点评)2.教学四种命题的相互关系:①讨论:例1中命题(2)与它的逆命题、否命题、逆否命题间的关系.②四种命题的相互关系图:③讨论:例1中三个命题的真假与它们的逆命题、否命题、逆否命题的真假间关系.④结论一:原命题与它的逆否命题同真假;结论二:两个命题为互逆命题或互否命题,它们的真假性没有关系.⑤例2若,则.(利用结论一来证明)(教师引导学生板书教师点评)3.小结:四种命题的概念及相互关系.三、巩固练习:1.练习:写出下列命题的逆命题、否命题及逆否命题,并判断它们的真假.(1)函数有两个零点;(2)若,则;(3)若,则全为0;(4)全等三角形一定是相似三角形;(5)相切两圆的连心线经过切点.2.作业:教材P9页第2(2)题P10页第3(1)题12