组合⑶课题:组合、组合数的综合应用⑴目的:进一步巩固组合、组合数的概念及其性质,能够解决一些较为复杂的组合应用问题,提高合理选用知识的能力.过程:一、知识复习:1.复习排列和组合的有关内容:依然强调:排列——次序性;组合——无序性.2.排列数、组合数的公式及有关性质性质1:性质2:=+常用的等式:3.练习:处理《教学与测试》76课例题二、例题评讲:例1.100件产品中有合格品90件,次品10件,现从中抽取4件检查.⑴都不是次品的取法有多少种?⑵至少有1件次品的取法有多少种?⑶不都是次品的取法有多少种?解:⑴;⑵;⑶.例2.从编号为1,2,3,…,10,11的共11个球中,取出5个球,使得这5个球的编号之和为奇数,则一共有多少种不同的取法?解:分为三类:1奇4偶有;3奇2偶有;5奇1偶有所以一共有++.例3.现有8名青年,其中有5名能胜任英语翻译工作;有4名青年能胜任德语翻译工作(其中有1名青年两项工作都能胜任),现在要从中挑选5名青年承担一项任务,其中3名从事英语翻译工作,2名从事德语翻译工作,则有多少种不同的选法?解:我们可以分为三类:①让两项工作都能担任的青年从事英语翻译工作,有;②让两项工作都能担任的青年从事德语翻译工作,有;③让两项工作都能担任的青年不从事任何工作,有.用心爱心专心1所以一共有++=42种方法.例4.甲、乙、丙三人值周,从周一至周六,每人值两天,但甲不值周一,乙不值周六,问可以排出多少种不同的值周表?解法一:(排除法)解法二:分为两类:一类为甲不值周一,也不值周六,有;另一类为甲不值周一,但值周六,有.所以一共有+=42种方法.例5.6本不同的书全部送给5人,每人至少1本,有多少种不同的送书方法?解:第一步从6本不同的书中任取2本“捆绑”在一起看成一个元素有种方法;第二步将5个“不同元素(书)”分给5个人有种方法.根据分步计数原理,一共有=1800种方法.变题1:6本不同的书全部送给5人,有多少种不同的送书方法?变题2:5本不同的书全部送给6人,每人至多1本,有多少种不同的送书方法?变题3:5本相同的书全部送给6人,每人至多1本,有多少种不同的送书方法?答案:1.;2.;3..三、小结:1.组合的定义,组合数的公式及其两个性质;2.组合的应用:分清是否要排序.四、作业:《3+X》组合基础训练《课课练》课时10组合四用心爱心专心2