电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高二数学 随机抽样5教案 新人教A版VIP免费

高二数学 随机抽样5教案 新人教A版_第1页
高二数学 随机抽样5教案 新人教A版_第2页
高二数学 随机抽样5教案 新人教A版_第3页
第34课时7.2.3复习课1学习要求1.复习随机事件及其概率2.复习古典概型及其概率公式,并进行综合应用.【课堂互动】自学评价1.下列事件中不可能事件是(C)A.三角形的内角和为180°B.三角形中大边对的角大,小边对的角小C.锐角三角形中两个内角的和小于90°D.三角形中任意两边的和大于第三边2.在12件同类产品中,有10件是正品,2件是次品,从中任意抽出3件的必然事件是(D)A.3件都是正品B.至少有1件是次品C.3件都是次品D.至少有一件是正品3.有4条线段,长度分别为1,3,5,7,从这四条线段中任取三条,则所取三条线段能构成一个三角形的概率是___________.【精典范例】例1事件”某人掷骰子5次,两次点数为2”是随机事件吗?条件和结果是什么?一次试验是指什么?一共做了几次试验?解:是随机事件.条件:某人掷骰子5次,结果:两次点数为2,掷骰子一次就是一次试验,一共做了5次试验.例2从甲、乙、丙、丁四个人中选两名代表,求:(1)甲被选中的概率;(2)丁没被选中的概率.解:从甲、乙、丙、丁四个人中选两名代表包含6个基本事件:甲乙、甲丙、甲丁、乙丙、乙丁、丙丁.(1)记甲被选中为事件,则;(2)记丁没被选中为事件,则.例3袋中有大小相同的红、黄两种颜色的球各个,从中任取只,有放回地抽取次.求:①只全是红球的概率;②只颜色全相同的概率;③只颜色不全相同的概率.解:①每次抽到红球的概率为②每次抽到红球或黄球③颜色不全相同是全相同的对立,例4现有一批产品共有件,其中件为正品,件为次品:(1)如果从中取出一件,然后放回,再取一件,求连续次取出的都是正品的概率;(2)如果从中一次取件,求件都是正品的概率.解:1)有放回地抽取次,按抽取顺序记录结果,则都有种可能,所以用心爱心专心1试验结果有种;设事件为“连续次都取正品”,则包含的基本事件共有种,因此,(2)可以看作不放回抽样次,顺序不同,基本事件不同,按抽取顺序记录,则有种可能,有种可能,有种可能,所以试验的所有结果为种新疆源头学子小屋特级教师王新敞http://www.xjktyg.com/wxc/wxckt@126.comwxckt@126.comhttp://www.xjktyg.com/wxc/王新敞特级教师源头学子小屋新疆设事件为“件都是正品”,则事件包含的基本事件总数为,所以追踪训练1.①已经发生的事件一定是必然事件;②随机事件的发生能够人为控制其发生或不发生;③不可能事件反映的是确定性现象;④随机现象的结果是可以预知的.以上说法正确的是(C)A.①③B.①②C.③D.②④2.先后抛掷两颗骰子,设出现的点数之和是10,8,6的概率依次是,则(C)A.B.C.D.3.正六边形的顶点共有6个,以其中2个点为端点连成的线段中,正好是正六边形的边的概率为____________.4.有三个人,每个人都以相同的概率被分配到四个房间中的每一间.试求(1)三个人都分配到同一房间的概率;(2)至少有两个人分配到同一房间的概率.解:(1)三个人分配到同一房间有4种分法,故由等可能事件的概率可知,所求的概率为.(2)设事件B为”至少有两人分配到同一房间”,则考虑事件B的剩余情况为”三个人分配到三个不同的房间”. 三个人分配到三个不同房间共有种方法,∴.第5课时7.2.3复习课1分层训练用心爱心专心21、在件产品中,有件一级品,件二级品,则下列事件:①在这件产品中任意选出件,全部是一级品;②在这件产品中任意选出件,全部是二级品;③在这件产品中任意选出件,不全是一级品;④在这件产品中任意选出件,其中不是一级品的件数小于,其中是必然事件;是不可能事件;是随机事件.2、从一批羽毛球产品中任取一个,其质量小于4.8g的概率为0.3,质量小于4.85g的概率为0.32,那么质量在[4.8,4.85](g)范围内的概率是()A.0.62B.0.38C.0.02D.0.683、.先后抛掷骰子三次,则至少一次正面朝上的概率是()A.B.C.D.4、将一枚质地均匀的硬币连掷4次,出现“2次正面朝上,2次反面朝上”的概率是()A.B.C.D.5、给出下列两个随机事件:(1)抛10次同一枚的质地均匀的硬币,有10次正面向上;(2)姚明在本赛季中共罚球57次,有53次投球命中.其中事件(1)的一次试验是_____________,事件(2)一共进行了___________次试验.6、某产品分为甲、乙、丙三级,其中乙、丙两级均属次品,若生产中出现乙级...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

雨丝书吧+ 关注
实名认证
内容提供者

乐于和他人分享知识,从事历史教学,热爱教育,高度负责。

最新文章

确认删除?
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部