课题:l1.3相互独立事件同时发生的概率(三)教学目的:1奎屯王新敞新疆理解独立重复试验的概念,明确它的实际意义;2.引出次独立重复试验中某事件恰好发生次的概率计算公式;3.了解概率计算公式与二项式定理的内在联系奎屯王新敞新疆教学重点:次独立重复试验中某事件恰好发生次的概率计算公式奎屯王新敞新疆教学难点:独立重复试验的判定奎屯王新敞新疆授课类型:新授课奎屯王新敞新疆课时安排:1课时奎屯王新敞新疆教具:多媒体、实物投影仪奎屯王新敞新疆教学过程:一、复习引入:11奎屯王新敞新疆事件的定义:随机事件:在一定条件下可能发生也可能不发生的事件;必然事件:在一定条件下必然发生的事件;不可能事件:在一定条件下不可能发生的事件奎屯王新敞新疆2.随机事件的概率:一般地,在大量重复进行同一试验时,事件发生的频率总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件的概率,记作.3.概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率;4.概率的性质:必然事件的概率为,不可能事件的概率为,随机事件的概率为,必然事件和不可能事件看作随机事件的两个极端情形奎屯王新敞新疆51奎屯王新敞新疆基本事件:一次试验连同其中可能出现的每一个结果(事件)称为一个基本事件奎屯王新敞新疆6.等可能性事件:如果一次试验中可能出现的结果有个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是,这种事件叫等可能性事件奎屯王新敞新疆7.等可能性事件的概率:如果一次试验中可能出现的结果有个,而且所有结果都是等可能的,如果事件包含个结果,那么事件的概率奎屯王新敞新疆8.等可能性事件的概率公式及一般求解方法奎屯王新敞新疆9.事件的和的意义:对于事件A和事件B是可以进行加法运算的奎屯王新敞新疆10奎屯王新敞新疆互斥事件:不可能同时发生的两个事件.一般地:如果事件中的任何两个都是互斥的,那么就说事件彼此互斥奎屯王新敞新疆11.对立事件:必然有一个发生的互斥事件.12.互斥事件的概率的求法:如果事件彼此互斥,那么=奎屯王新敞新疆13.相互独立事件:事件(或)是否发生对事件(或)发生的概率没有影响,这样的两个事件叫做相互独立事件奎屯王新敞新疆若与是相互独立事件,则与,与,与也相互独立奎屯王新敞新疆14.相互独立事件同时发生的概率:一般地,如果事件相互独立,那么这个事件同时发生的概率,等于每个事件发生的概率的积,奎屯王新敞新疆二、讲解新课:12奎屯王新敞新疆独立重复试验的定义:指在同样条件下进行的,各次之间相互独立的一种试验奎屯王新敞新疆2.独立重复试验的概率公式:一般地,如果在1次试验中某事件发生的概率是,那么在次独立重复试验中这个事件恰好发生次的概率.它是展开式的第项奎屯王新敞新疆三、讲解范例:例1.某气象站天气预报的准确率为,计算(结果保留两个有效数字):(1)5次预报中恰有4次准确的概率;(2)5次预报中至少有4次准确的概率奎屯王新敞新疆解:(1)记“预报1次,结果准确”为事件.预报5次相当于5次独立重复试验,根据次独立重复试验中某事件恰好发生次的概率计算公式,5次预报中恰有4次准确的概率答:5次预报中恰有4次准确的概率约为0.41.(2)5次预报中至少有4次准确的概率,就是5次预报中恰有4次准确的概率与5次预报都准确的概率的和,即奎屯王新敞新疆答:5次预报中至少有4次准确的概率约为0.74.例2.某车间的5台机床在1小时内需要工人照管的概率都是,求1小时内5台机床中至少2台需要工人照管的概率是多少?(结果保留两个有效数字)解:记事件=“1小时内,1台机器需要人照管”,1小时内5台机器需要照管相当于5次独立重复试验奎屯王新敞新疆1小时内5台机床中没有1台需要工人照管的概率,1小时内5台机床中恰有1台需要工人照管的概率,所以1小时内5台机床中至少2台需要工人照管的概率为奎屯王新敞新疆答:1小时内5台机床中至少2台需要工人照管的概率约为.点评:“至多”,“至少”问题往往考虑逆向思维法奎屯王新敞新疆例3.某人对一目标进行射击,每次命中率都是0.25,若使至少命中1次的概率不小于0.75,至少应射击几次?解...