电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

(新课标版)高考数学真题分类汇编 12.4 离散型随机变量及其分布列、均值与方差 理 VIP免费

(新课标版)高考数学真题分类汇编 12.4 离散型随机变量及其分布列、均值与方差 理 _第1页
(新课标版)高考数学真题分类汇编 12.4 离散型随机变量及其分布列、均值与方差 理 _第2页
(新课标版)高考数学真题分类汇编 12.4 离散型随机变量及其分布列、均值与方差 理 _第3页
§12.4离散型随机变量及其分布列、均值与方差考点一离散型随机变量及其分布列1.(北京,16,13分)李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立):场次投篮次数命中次数场次投篮次数命中次数主场12212客场1188主场21512客场21312主场3128客场3217主场4238客场41815主场52420客场52512(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;(2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;(3)记为表中10个命中次数的平均数.从上述比赛中随机选择一场,记X为李明在这场比赛中的命中次数.比较EX与的大小.(只需写出结论)解析(1)根据投篮统计数据,在10场比赛中,李明投篮命中率超过0.6的场次有5场,分别是主场2,主场3,主场5,客场2,客场4.所以在随机选择的一场比赛中,李明的投篮命中率超过0.6的概率是0.5.(2)设事件A为“在随机选择的一场主场比赛中李明的投篮命中率超过0.6”,事件B为“在随机选择的一场客场比赛中李明的投篮命中率超过0.6”,事件C为“在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6”.则C=A∪B,A,B独立.根据投篮统计数据,P(A)=,P(B)=.P(C)=P(A)+P(B)=×+×=.所以,在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6的概率为.(3)EX=.2.(天津,16,13分)某大学志愿者协会有6名男同学,4名女同学.在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).(1)求选出的3名同学是来自互不相同学院的概率;(2)设X为选出的3名同学中女同学的人数,求随机变量X的分布列和数学期望.解析(1)设“选出的3名同学是来自互不相同的学院”为事件A,则P(A)==.所以选出的3名同学是来自互不相同的学院的概率为.(2)随机变量X的所有可能值为0,1,2,3.P(X=k)=(k=0,1,2,3).所以随机变量X的分布列是X0123P随机变量X的数学期望E(X)=0×+1×+2×+3×=.3.(四川,17,12分)一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X,求X的分布列;(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?(3)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.解析(1)X可能的取值为10,20,100,-200.根据题意,有P(X=10)=××=,P(X=20)=××=,P(X=100)=××=,P(X=-200)=××=.所以X的分布列为X1020100-200P(2)设“第i盘游戏没有出现音乐”为事件Ai(i=1,2,3),则P(A1)=P(A2)=P(A3)=P(X=-200)=.所以,“三盘游戏中至少有一次出现音乐”的概率为1-P(A1A2A3)=1-=1-=.因此,玩三盘游戏至少有一盘出现音乐的概率是.(3)X的数学期望为EX=10×+20×+100×-200×=-.这表明,获得分数X的均值为负.因此,多次游戏之后分数减少的可能性更大.4.(山东,18,12分)乒乓球台面被球网分隔成甲、乙两部分,如图,甲上有两个不相交的区域A,B,乙被划分为两个不相交的区域C,D,某次测试要求队员接到落点在甲上的来球后向乙回球.规定:回球一次,落点在C上记3分,在D上记1分,其他情况记0分.对落点在A上的来球,队员小明回球的落点在C上的概率为,在D上的概率为;对落点在B上的来球,小明回球的落点在C上的概率为,在D上的概率为.假设共有两次来球且落在A,B上各一次,小明的两次回球互不影响.求:(1)小明两次回球的落点中恰有一次的落点在乙上的概率;(2)两次回球结束后,小明得分之和ξ的分布列与数学期望.解析(1)记Ai为事件“小明对落点在A上的来球回球的得分为i分”(i=0,1,3),则P(A3)=,P(A1)=,P(A0)=1--=;记Bi为事件“小明对落点在B上的来球回球的得分为i分”(i=0,1,3),则P(B3)=,P(B1)=,P(B0)=1--=.记D为事件“小明两次回球的落点中恰有1次的落点在乙上”.由题意,D=A3B0+A1B0+A0B1...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部