§6.2等差数列考点一等差数列的概念及运算1.(福建,3,5分)等差数列{an}的前n项和为Sn,若a1=2,S3=12,则a6等于()A.8B.10C.12D.14答案C2.(辽宁,8,5分)设等差数列{an}的公差为d.若数列{}为递减数列,则()A.d<0B.d>0C.a1d<0D.a1d>0答案C3.(大纲全国,18,12分)等差数列{an}的前n项和为Sn.已知a1=10,a2为整数,且Sn≤S4.(1)求{an}的通项公式;(2)设bn=,求数列{bn}的前n项和Tn.解析(1)由a1=10,a2为整数知,等差数列{an}的公差d为整数.又Sn≤S4,故a4≥0,a5≤0,于是10+3d≥0,10+4d≤0.解得-≤d≤-.因此d=-3.数列{an}的通项公式为an=13-3n.(6分)(2)bn==.(8分)于是Tn=b1+b2+…+bn===.(12分)考点二等差数列的性质4.(北京,12,5分)若等差数列{an}满足a7+a8+a9>0,a7+a10<0,则当n=时,{an}的前n项和最大.答案85.(江苏,20,16分)设数列{an}的前n项和为Sn.若对任意的正整数n,总存在正整数m,使得Sn=am,则称{an}是“H数列”.(1)若数列{an}的前n项和Sn=2n(n∈N*),证明:{an}是“H数列”;(2)设{an}是等差数列,其首项a1=1,公差d<0.若{an}是“H数列”,求d的值;(3)证明:对任意的等差数列{an},总存在两个“H数列”{bn}和{cn},使得an=bn+cn(n∈N*)成立.解析(1)证明:由已知,当n≥1时,an+1=Sn+1-Sn=2n+1-2n=2n.于是对任意的正整数n,总存在正整数m=n+1,使得Sn=2n=am.所以{an}是“H数列”.(2)由已知,得S2=2a1+d=2+d.因为{an}是“H数列”,所以存在正整数m,使得S2=am,即2+d=1+(m-1)d,于是(m-2)d=1.因为d<0,所以m-2<0,故m=1.从而d=-1.当d=-1时,an=2-n,Sn=是小于2的整数,n∈N*.于是对任意的正整数n,总存在正整数m=2-Sn=2-,使得Sn=2-m=am,所以{an}是“H数列”.因此d的值为-1.(3)证明:设等差数列{an}的公差为d,则an=a1+(n-1)d=na1+(n-1)(d-a1)(n∈N*).令bn=na1,cn=(n-1)(d-a1),则an=bn+cn(n∈N*),下证{bn}是“H数列”.设{bn}的前n项和为Tn,则Tn=a1(n∈N*).于是对任意的正整数n,总存在正整数m=,使得Tn=bm.所以{bn}是“H数列”.同理可证{cn}也是“H数列”.所以,对任意的等差数列{an},总存在两个“H数列”{bn}和{cn},使得an=bn+cn(n∈N*).