电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

浅说函数与几何综合题的解题策略及复习VIP免费

浅说函数与几何综合题的解题策略及复习_第1页
浅说函数与几何综合题的解题策略及复习_第2页
浅说函数与几何综合题的解题策略及复习_第3页
第1页共9页OACPFBE编号:时间:2021年x月x日书山有路勤为径,学海无涯苦作舟页码:第1页共9页浅说函数与几何综合题的解题策略及复习函数与几何是初中数学中的重点内容,是中考命题重点考查的内容之一;函数中的几何问题,能使代数知识图形化,而几何中的函数问题,能使图形性质代数化;由于函数与几何结合的综合题的形式灵活、立意新颖,能更好地考查学生的思维水平和数学思想方法,因而成为近几年各地中考的一类热门试题;这一特点在孝感市近三年的中考数学试卷中表现得尤为突出;如2001年的中考压轴题是以直角三角形为背景,揉合一次函数、相似形、直线与圆的位置关系等知识构成;2002年的中考压轴题是以矩形为背景,揉合轴对称、二次函数、几何证明等知识构成;2003年的压轴题是以二次函数为背景,揉合直角三角形的知识构成;因此,将函数知识与几何知识有机结合编制出综合题作为压轴题是我市中考命题的一大特点,也是今后中考命题的一大趋势;函数知识与几何知识有机结合的综合题,根据构成命题的主要要素可分为以下两类:一类是几何元素间的函数关系问题(这类问题不妨称简称为“几函”问题),这类问题的特点是:根据已知几何图形间的位置和数量关系(如平行、全等、相似,特别是成比例)建立自变量与函数所表示的几何元素间的等量关系,求出函数关系式,运用函数的性质解决几何图形中的问题;另一类是函数图像中的几何图形的问题(如三角形、四边形,特别是圆)(这类问题不妨简称为“函几”问题),这类问题的特点是:根据已知函数图像中的几何图形的位置特征,运用数形结合方法解决有关函数、几何问题;本文特从2003年各地的中考试题中略选几例,谈一谈解决这类问题的策略和复习方法,以期达到抛砖引玉的目的。一、函数与几何综合题例析(一)“几函”问题:1、线段与线段之间的函数关系:由于这类试题的主要要素是几何图形,因此,在解决此类问题时首先要观察几何图形的特征,然后依据相关图形的性质(如直角三角形的性质、特殊四边形的性质、平行线分线段成比例定理及其推论、相似三角形的性质、圆的基本性质、圆中的比例线段等等)找出几何元素之间的联系,最后将它们的联系用数学式子表示出来,并整理成函数关系式,在此函数关系式的基础上再来解决其它的问题;解决此类问题时,要特别注意自变量的取值范围。例1如图,AB是半圆的直径,O为圆心AB=6,延长BA到F,使FA=AB,若P为线段AF上的一个动点(不与A重合),过P点作半圆的切线,切点为C,过B点作BEPC⊥交PC的延长线于E,设AC=x,AC+BE=y,求y与x的函数关系式及x的取值范围。(2003年山东省烟台市中考题)评析:这是一道集圆、直角三角形、相似三角形与函数的综合题,由于已知条件中有切线,因此可以联想切线的性质、切割线定理、弦切角定理、切线长定理;又因为有直径这一已知条件,又可联想构造直径所对的圆周角。因此,连结BC,构造出“双直角三角形”和弦切角定理的典型图形,然后利用两对相似三角形中的一对建立比例式,再结合勾股定理解决问题。第2页共9页第1页共9页编号:时间:2021年x月x日书山有路勤为径,学海无涯苦作舟页码:第2页共9页解:连结BC, AB是⊙O的直径,∠ACB=90°,∴BC2=36-x2又 PC切⊙O于C,∠ECB=∠BCA;由BEPC⊥于E可知,∠ACB=∠CEB=90°,∴ΔACBΔCEB∽;ABBC=BCBE,即BE=BC2AB=6−x26∴y=−x26+x+6;当P点与A点重合时,AC=0最小,但P点与A点不重合,∴x>0;当P点与F点重合时,x=AC最大,此时有PC2=PA·PB=6×12,∴PC=6√2又∠P=P∠,∠PCA=PBCΔPCAΔPBC∠∴∽∴ACCB=PCPB即ACBC=6√212BC=∴√2AC由勾股定理得,AC2+(√2AC)2=36∴AC=2√3,函数关系式为:y=−x26+x+6(0

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

中小学文库+ 关注
实名认证
内容提供者

精品资料应用尽有

确认删除?
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群