统计分析学习总结经过四周的课程主要学习了以下几种分析方法:1.方差分析方差分析(analysisofvariance,简称anova),又称"变异数分析"或"f检验",是r.a.fisher发明的,用于两个及两个以上样本均数差别的显著性检验。由于各种因素的影响,研究所得的数据呈现波动状。造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果形成影响的可控因素。方差分析是从观测变量的方差入手,研究诸多控制变量中哪些变量是对观测变量有显著影响的变量。作用。一个复杂的事物,其中往往有许多因素互相制约又互相依存。方差分析的目的是通过数据分析找出对该事物有显著影响的因素,各因素之间的交互作用,以及显著影响因素的最佳水平等。方差分析是在可比较的数组中,把数据间的总的“变差”按各指定的变差来源进行分解的一种技术。对变差的度量,采用离差平方和。方差分析方法就是从总离差平方和分解出可追溯到指定来源的部分离差平方和,这是一个很重要的思想。经过方差分析若拒绝了检验假设,只能说明多个样本总体均值不相等或不全相等。若要得到各组均值间更详细的信息,应在方差分析的基础上进行多个样本均值的两两比较。(1)多个样本均值间两两比较多个样本均值间两两比较常用q检验的方法,即newman-kueuls法,其基本步骤为:建立检验假设-->样本均值排序-->计算q值-->查q界值表判断结果。(2)多个实验组与一个对照组均值间两两比较多个实验组与一个对照组均值间两两比较,若目的是减小第ii类错误,最好选用最小显著差法(lsd法);若目的是减小第i类错误,最好选用新复极差法,前者查t界值表,后者查q'界值表。折叠分析方法根据资料设计类型的不同,有以下两种方差分析的方法:第1页共6页1、对成组设计的多个样本均值比较,应采用完全随机设计的方差分析,即单因素方差分析。2、对随机区组设计的多个样本均值比较,应采用配伍组设计的方差分析,即两因素方差分析。折叠两类方差分析的异同两类方差分析的基本步骤相同,只是变异的分解方式不同,对成组设计的资料,总变异分解为组内变异和组间变异(随机误差),即:ss总=ss组间+ss组内,而对配伍组设计的资料,总变异除了分解为处理组变异和随机误差外还包括配伍组变异,即:ss总=ss处理+ss配伍+ss误差。折叠基本步骤整个方差分析的基本步骤如下:1、建立检验假设;1h0:多个样本总体均值相等;h1。多个样本总体均值不相等或不全等。检验水准为0.05。2、计算检验统计量f值;3、确定p值并作出推断结果。2.回归分析法定义所谓回归分析法,是在掌握大量观察数据的基础上,利用数理统计方法建立因变量与自变量之间的回归关系函数表达式(称回归方程式)。回归分析法不能用于分析与评价工程项目风险。分类回归分析中,当研究的因果关系只涉及因变量和一个自变量时,叫做一元回归分析;当研究的因果关系涉及因变量和两个或两个以上自变量时,叫做多元回归分析。根据自变量的个数,可以是一元回归,也可以是多元回归。此外,回归分析中,又依据描述自变量与因变量之间因果关系的函数表达式是线性的还是非线性的,分为线性回归分析和非线性回归分析。根据所研究问题的性质,可以是线性回归,也可以是非线性回归。通常线性回归分析法是最基本的分析方法,遇到非线性回归问题可以借助数学手段化为线性回归问题处理。回归分析法预测是利用回归分析方法,根据一个或一组自变量的变动情况预测与其有相关关系的某随机变量的未来值。进行第2页共6页回归分析需要建立描述变量间相关关系的回归方程。应用社会经济现象之间的相关关系往往难以用确定性的函数关系来描述,它们大多是随机性的,要通过统计观察才能找出其中规律。回归分析是利用统计学原理描述随机变量间相关关系的一种重要方法。在物流的计算中,回归分析法的公式如下:y=a+bxb=∑xy-n·∑x∑y/[∑xsup2-n·(∑x)sup2];a=∑y-b·∑x/n3.主成分分析和因子分析principalcomponentanalysis(pca)主成分分析法是一种数学变换的方法,它把给定的一组相关变量通过线性变换转成另一组不相关的变量,这些新的变量按照方差依次递减的顺序排列。在数学变换中保持变量的总方差...