电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

八年级上册实数专题训练VIP免费

八年级上册实数专题训练_第1页
八年级上册实数专题训练_第2页
八年级上册实数专题训练_第3页
1实数专题训练一.学习目标1、了解无理数和实数的概念;会对实数按照一定的标准进行分类,培养分类能力。2、了解分类的标准与分类结果的相关性,进一步了解体会“集合”的含义。3、了解实数范围内相反数、倒数数和绝对值的意义。4、了解数轴上的点与实数一一对应,能用数轴上的点来表示无理数。二.教学重点与难点1、有理数的分类;数轴、相反数、绝对值及有理数的运算。2、关于绝对值的化简;有理数的混合运算;符号情况;规律探索题。3、绝对值的化简;运算时符号的错误;规律探索无从下手。三.考点分析1.算术平方根、平方根、立方根的性质。2.算术平方根、平方根、立方根的性质。3.创新思维题。四.知识体系与典型例题分析【无理数】1.定义:无限不循环小数的小数叫做无理数;注:它必须满足“无限”以及“不循环”这两个条件。2.常见无理数的几种类型:(1)特殊意义的数,如:圆周率以及含有的一些数,如:2-,3等;(2)特殊结构的数(看似循环而实则不循环):如:2.01001000100001⋯(两个1之间依次多1个0)等。(3)无理数与有理数的和差结果都是无理数。如:2-是无理数(4)无理数乘或除以一个不为0的有理数结果是无理数。如2,(5)开方开不尽的数,如:39,5,2等;应当要注意的是:带根号的数不一定是无理数,如:9等;无理数也不一定带根号,如:)23.有理数与无理数的区别:(1)有理数指的是有限小数和无限循环小数,而无理数则是无限不循环小数;(2)所有的有理数都能写成分数的形式(整数可以看成是分母为1的分数),而无理数则不能写成分数形式。例:(1)下列各数:①3.141、②0.33333⋯⋯、③75、④π、⑤252.、⑥32、⑦0.3030003000003⋯⋯(相邻两个3之间0的个数逐次增加2)、其中是有理数的有____;是无理数的有___。(填序号)(2)有五个数:0.125125⋯,0.1010010001⋯,-,4,32其中无理数有()个【算术平方根】:1.定义:如果一个正数x的平方等于a,即ax2,那么,这个正数x就叫做a的算术平方根,记为:“a”,读作,“根号a”,其中,a称为被开方数。例如32=9,那么9的算术平方根是3,即39。特别规地,0的算术平方根是0,即00,负数没有算术平方根2.算术平方根具有双重非负性:(1)若a有意义,则被开方数a是非负数。(2)算术平方根本身是非负数。3.算术平方根与平方根的关系:算术平方根是平方根中正的一个值,它与它的相反数共同构成了平方根。因此,算术平方根只有一个值,并且是非负数,它只表示为:a;而平方根具有两个互为相反数的值,表示为:a。例:(1)下列说法正确的是()A.1的立方根是1;B.24;(C)、81的平方根是3;(D)、0没有平方根;(2)下列各式正确的是()A、981B、14.314.3C、3927D、235(3)2)3(的算术平方根是。(4)若xx有意义,则31x___________。(5)已知△ABC的三边分别是,,,cba且ba,满足0)4(32ba,求c的取值范围。(6)(提高题)如果x、y分别是4-3的整数部分和小数部分。求x-y的值.平方根:1.定义:如果一个数x的平方等于a,即ax2,那么这个数x就叫做a的平方根;,我们称x是a的平方(也叫二次方根),记做:)0(aax2.性质:(1)一个正数有两个平方根,且它们互为相反数;(2)0只有一个平方根,它是0本身;(3)负数没有平方根例(1)若x的平方根是±2,则x=;16的平方根是(2)当x时,x23-有意义。(3)一个正数的平方根分别是m和m-4,则m的值是多少?这个正数是多少?3.的性质与22)0()(aaa(1)77)0()22)如:(aaa(2)||2aa中,a可以取任意实数。如5|5|523|3-|3-2)(例:1.求下列各式的值(1)27(2)27-)((3)249-)(2.已知1)12aa(,那么a的取值范围是。3.已知2<x<3,化简|3|)-22xx(。【立方根】1.定义:一般地,如果以个数x的立方等于a,即x3=a,那么这个数x就叫4做a的立方根(也叫做三次方根)记为3a,读作,3次根号a。如23=8,则2是8的立方根,0的立方根是0。2.性质:正数的立方根的正数;0的立方根是0;负数的立方根是负数。立方根是它本身的数有0,1,-1.例:(1)64的立方根是(2)若9.28,89.233aba,则b等于(3)下列说法中:①3都是27的立方根,②yy33,③64的立方根是2,④4832。其中正确的有...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部