电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

人教版21章一元二次方程知识点总结VIP免费

人教版21章一元二次方程知识点总结_第1页
人教版21章一元二次方程知识点总结_第2页
人教版21章一元二次方程知识点总结_第3页
21章一元二次方程知识点一、一元二次方程1、一元二次方程概念:等号两边是整式,含有一个未知数,并且未知数的最高次数是2的方程叫做一元二次方程。注意:(1)一元二次方程必须是一个整式方程;(2)只含有一个未知数;(3)未知数的最高次数是2;(4)二次项系数不能等于02、一元二次方程的一般形式:)0(02acbxax,它的特征是:等式左边是一个关于未知数x的二次三项式,等式右边是零,其中2ax叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项。注意:(1)二次项、二次项系数、一次项、一次项系数,常数项都包括它前面的符号。(2)要准确找出一个一元二次方程的二次项系数、一次项系数和常数项,必须把它先化为一般形式。(3)形如02cbxax不一定是一元二次方程,当且仅当0a时是一元二次方程。二、一元二次方程的解使方程左、右两边相等的未知数的值叫做方程的解,如:当2x时,0232xx所以2x是0232xx方程的解。一元二次方程的解也叫一元二次方程的根。一元二次方程有两个根(相等或不等)三、一元二次方程的解法1、直接开平方法:直接开平方法理论依据:平方根的定义。利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。根据平方根的定义可知,ax是b的平方根,当0b时,bax,bax,当b<0时,方程没有实数根。三种类型:(1)02aax的解是ax;(2)02nnmx的解是mnx;(3)0,02cmcnmx且的解是mncx。2、配方法:配方法的理论根据是完全平方公式222)(2bababa,把公式中的a看做未知数x,并用x代替,则有222)(2bxbbxx。(一)用配方法解二次项系数为1的一元二次方程用配方法解二次项系数为1的一元二次方程的步骤:(1)把一元二次方程化成一般形式(2)在方程的左边加上一次项系数绝对值的一半的平方,再减去这个数;(3)把原方程变为nmx2的形式。(4)若0n,用直接开平方法求出x的值,若n﹤0,原方程无解。(二)用配方法解二次项系数不是1的一元二次方程当一元二次方程的形式为1,002aacbxax时,用配方法解一元二次方程的步骤:(1)把一元二次方程化成一般形式(2)先把常数项移到等号右边,再把二次项的系数化为1:方程的左、右两边同时除以二项的系数;(3)在方程的左、右两边加上一次项系数绝对值的一半的平方把原方程化为nmx2的形式;(4)若0n,用直接开平方法或因式分解法解变形后的方程。3、公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。一元二次方程)0(02acbxax的求根公式:)04(2422acbaacbbx用求根公式法解一元二次方程的步骤是:(1)把方程化为002acbxax的形式,确定的值cba.,(注意符号);(2)求出acb42的值;并判断方程根的情况;(3)若042acb,则把.,ba及acb42的值代人求根公式aacbbx242,求出21,xx。4、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法这种方法简单易行,是解一元二次方程最常用的方法。因式分解法的理论依据:如果两个因式的积等于0,那么这两个方程中至少有一个等于0,即若pq=0时,则p=0或q=0。用因式分解法解一元二次方程的一般步骤:(1)将方程的右边化为0(即化为一般式);(2)将方程左边分解成两个一次因式的乘积。(3)令每个因式分别为0,得两个一元一次方程。(4)解这两个一元一次方程,它们的解就是原方程的解。关键点:(1)要将方程右边化为0(即化为一般式);(2)熟练掌握多项式因式分解的方法,常用方法有:提公式法,公式法(平方差公式,完全平方公式)、十字相乘法。注意:一元二次方程解法的选择,应遵循先特殊,再一般,即先考虑能否用直接开平方法或因式分解法,不能用这两种特殊方法时,再选用公式法,没有特殊要求,一般不采用配方法,因为配方法解题比较麻烦。三、一元二次方程根的判别式一元二次方程)0(02acbxax中,acb42叫做一元二次方程)0(02acbxax的根的判别式,通常用“”来表示,即acb42I当△>0时,一元二次方程有2个不相等的实数根;II当△=0时,一元二次方程有2个相同的实数根;III当△<0时,一元二次方程没有实数根利用根的判别式判定一元二次方程根的情况的步骤:①把所有一元二次方程化为一般形式;②确定...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

爱的疯狂+ 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部