v1.0可编辑可修改1第1页共22页一元一次方程应用题归类汇集一、列方程解应用题的一般步骤(解题思路)(1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设—设出未知数:根据提问,巧设未知数.(3)列—列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解——解方程:解所列的方程,求出未知数的值.(5)答—检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位)二、各类题型解法分析一元一次方程应用题归类汇集:行程问题,工程问题,和差倍分问题(生产、做工等各类问题),等积变形问题,调配问题,分配问题,配套问题,增长率问题,数字问题,方案设计与成本分析,古典数学,浓度问题等。第一类、行程问题基本的数量关系:(1)路程=速度×时间⑵速度=路程÷时间⑶时间=路程÷速度要特别注意:路程、速度、时间的对应关系(即在某段路程上所对应的速度和时间各是多少)常用的等量关系:1、甲、乙二人相向相遇问题⑴甲走的路程+乙走的路程=总路程⑵二人所用的时间相等或有提前量2、甲、乙二人中,慢者所行路程或时间有提前量的同向追击问题⑴甲走的路程-乙走的路程=提前量⑵二人所用的时间相等或有提前量3、单人往返⑴各段路程和=总路程⑵各段时间和=总时间⑶匀速行驶时速度不变4、行船问题与飞机飞行问题⑴顺水速度=静水速度+水流速度⑵逆水速度=静水速度-水流速度5、考虑车长的过桥或通过山洞隧道问题将每辆车的车头或车尾看作一个人的行驶问题去分析,一切就一目了然。v1.0可编辑可修改2第2页共22页6、时钟问题:⑴将时钟的时针、分针、秒针的尖端看作一个点来研究⑵通常将时钟问题看作以整时整分为起点的同向追击问题来分析。常用数据:①时针的速度是°/分②分针的速度是6°/分③秒针的速度是6°/秒一、一般行程问题(相遇与追击问题)1、从甲地到乙地,某人步行比乘公交车多用小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲、乙两地相距x千米,则列方程为。解:等量关系步行时间-乘公交车的时间=小时列出方程是:6.3408xx2、甲、乙两人在相距18千米的两地同时出发,相向而行,1小时48分相遇,当甲比乙每小时快1千米时,求甲、乙两人的速度。解:等量关系甲行的总路程+乙行的路程=总路程(18千米)设乙的速度是x千米/时,则列出方程是:18211)1(211321xx3、某人从家里骑自行车到学校。若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米解:等量关系⑴速度15千米行的总路程=速度9千米行的总路程⑵速度15千米行的时间+15分钟=速度9千米行的时间-15分钟老师提醒:速度已知时,设时间列路程等式的方程,设路程列时间等式的方程。方法一:设预定时间为x小/时,则列出方程是:15(x-)=9(x+)方法二:设从家里到学校有x千米,则列出方程是:60159601515xx4、在800米跑道上有两人练习中长跑,甲每分钟跑320米,乙每分钟跑280米,两人同时同地同向起跑,t分钟后第一次相遇,t等于分钟。v1.0可编辑可修改3第3页共22页老师提醒:此题为环形跑道上,同时同地同向的追击问题(且为第一次相遇)等量关系:快者跑的路程-慢者跑的路程=800(俗称多跑一圈)320t-280t=800t=205、一列客车车长200米,一列货车车长280米,在平行的轨道上相向行驶,从两车头相遇到两车车尾完全离开经过16秒,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米老师提醒:将两车车尾视为两人,并且以两车车长和为总路程的相遇问题。等量关系:快车行的路程+慢车行的路程=两列火车的车长之和设客车的速度为3x米/秒,货车的速度为2x米/秒,则16×3x+16×2x=200+2806、与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。行人的速度是每小时,骑自行车的人的速度是每小时。如果一列火车从他们背后开来,它通过行人的时间是22秒,通过骑自行车的人的时间是26秒。⑴行人的速度为每秒多少米⑵这列火车的车长是多少米老师提醒:将...