专题5.3三种特殊的卫星及卫星的变轨问题、天体的追击相遇问题一、近地卫星、赤道上物体及同步卫星的运行问题1.近地卫星、同步卫星、赤道上的物体的比较比较内容赤道表面的物体近地卫星同步卫星向心力来源万有引力的分力万有引力向心力方向指向地心重力与万有引力的关系重力略小于万有引力重力等于万有引力线速度v1=ω1Rv2=GMRv3=ω3(R+h)=GMR+hv1<v3<v2(v2为第一宇宙速度)角速度ω1=ω自ω2=GMR3ω3=ω自=GMR+h3ω1=ω3<ω2向心加速度a1=ω21Ra2=ω22R=GMR2a3=ω23(R+h)=GMR+h2a1<a3<a22.天体半径R与卫星轨道半径r的比较卫星的轨道半径r是指卫星绕天体做匀速圆周运动的半径,与天体半径R的关系为r=R+h(h为卫星距离天体表面的高度),当卫星贴近天体表面运动(h≈0)时,可认为两者相等。【示例1】(多选)如图,地球赤道上的山丘e、近地资源卫星p和同步通信卫星q均在赤道平面上绕地心做匀速圆周运动。设e、p、q的圆周运动速率分别为v1、v2、v3,向心加速度分别为a1、a2、a3,则()A.v1>v2>v3B.v1<v3<v2C.a1>a2>a3D.a1<a3<a2【答案】BD【解析】由题意可知:山丘与同步卫星角速度、周期相同,由v=ωr,a=ω2r可知v1<v3、a1<a3;对同2步卫星和近地资源卫星来说,满足v=GMr、a=GMr2,可知v3<v2、a3<a2。故选项B、D正确。【示例2】(多选)同步卫星离地心距离为r,运行速率为v1,加速度为a1,地球赤道上的物体随地球自转的向心加速度为a2,第一宇宙速度为v2,地球的半径为R,则下列比值正确的是()A.a1a2=rRB.a1a2=r2R2C.v1v2=rRD.v1v2=Rr【答案】:AD【示例3】(2016·四川理综·3)国务院批复,自2016年起将4月24日设立为“中国航天日”.1970年4月24日我国首次成功发射的人造卫星东方红一号,目前仍然在椭圆轨道上运行,其轨道近地点高度约为440km,远地点高度约为2060km;1984年4月8日成功发射的东方红二号卫星运行在赤道上空35786km的地球同步轨道上.设东方红一号在远地点的加速度为a1,东方红二号的加速度为a2,固定在地球赤道上的物体随地球自转的加速度为a3,则a1、a2、a3的大小关系为()A.a2>a1>a3B.a3>a2>a1C.a3>a1>a2D.a1>a2>a3【答案】D【解析】由于东方红二号卫星是同步卫星,则其角速度和赤道上的物体角速度相等,根据a=ω2r,r2>r3,则a2>a3;由万有引力定律和牛顿第二定律得,GMmr2=ma,由题目中数据可以得出,r1a2>a3,选项D正确.【示例4】.有a、b、c、d四颗地球卫星,a在地球赤道上未发射,b在地面附近近地轨道上正常运动,c是地球同步卫星,d是高空探测卫星,各卫星排列位置如图,则有()3A.a的向心力由重力提供B.c在4h内转过的圆心角是π6C.b在相同时间内转过的弧长最长D.d的运动周期有可能是20h【答案】C二、卫星的变轨问题1.三种情境2.变轨问题的三点注意(1)航天器变轨时半径的变化,根据万有引力和所需向心力的大小关系判断;稳定在新轨道上的运行速度变化由v=GMr判断。(2)同一航天器在不同轨道上运行时机械能不同,轨道半径越大,机械能越大。(3)航天器经过不同轨道相交的同一点时加速度相等,外轨道的速度大于内轨道的速度【示例5】4(多选)“嫦娥一号”探月卫星绕地运行一段时间后,离开地球飞向月球。如图所示是绕地飞行的三条轨道,轨道1是近地圆形轨道,轨道2和轨道3是变轨后的椭圆轨道。A点是轨道2的近地点,B点是轨道2的远地点,卫星在轨道1的运行速率为7.7km/s,则下列说法中正确的是()A.卫星在轨道2经过A点时的速率一定大于7.7km/sB.卫星在轨道2经过B点时的速率一定小于7.7km/sC.卫星在轨道3所具有的机械能小于在轨道2所具有的机械能D.卫星在轨道3所具有的最大速率小于在轨道2所具有的最大速率【答案】AB【示例6】.(2014·山东卷·20)2013年我国相继完成“神十”与“天宫”对接、“嫦娥”携“玉兔”落月两大航天工程。某航天爱好者提出“玉兔”回家的设想:如图,将携带“玉兔”的返回系统由月球表面发射到h高度的轨道上,与在该轨道绕月球做圆周运动的飞船对接,然后由飞船送“玉兔”返回地球。设“玉兔”质量为m,月球半径为R,月面的重力加速度为g月...