育才新希望●初中数学(七年级上)——有理数主讲:宋瑞点燃新的希望,追寻你的梦想——育才新希望-1-1.5有理数的乘除法【学习目标】1、理解有理数的运算法则;能根据有理数乘法运算法则进行有理的简单运算;2、经历探索有理数乘法法则过程,发展观察、归纳、猜想、验证能力;【学习重点】有理数乘法法则【学习难点】能利用有理数乘法的法则进行计算课前思考:甲水库的水位每天升高3厘米,乙水库的水位每天下降3厘米,4天后甲,乙水库的水位的总变化量各是多少?1.有理数的乘法法则(1)乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘,积仍为0.①两个有理数相乘,积的符号是由两个因数的符号确定:同号(+,+或-,-)得正,异号(+,-或-,+)得负;②0与任何数相乘,积都是0;③1乘任何数得原数,-1乘任何数得原数的相反数.(2)两个有理数相乘的步骤①先确定积的符号;②再求出积的绝对值.(3)多个有理数的乘法①几个不等于0的有理数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.育才新希望●初中数学(七年级上)——有理数主讲:宋瑞点燃新的希望,追寻你的梦想——育才新希望-2-②几个有理数相乘,有一个因数为0,结果就是0;反之,若几个数的积为0,则至少有一个因数为0.释疑点有理数相乘的方法①几个有理数相乘,先确定积的符号,再把绝对值相乘;②当几个因数中有一个为0时,不用再判断符号,直接得0.【新知巩固1】计算:(1)(+4)×(-5);(2)(-0.75)×(-1.2);(3)-29×0.3;(4)0×-17;(5)-112×113×-114×-115×116.2.倒数如果两个有理数的乘积为1,那么称其中的一个数是另一个数的倒数,也称这两个数互为倒数.若a≠0,则a的倒数是1a.谈重点对倒数的理解①0没有倒数;②互为倒数的两个数的符号相同,即正数的倒数是正数,负数的倒数是负数;③若两个数互为倒数,则它们的乘积为1;④倒数等于它本身的数是1和-1.【新知巩固2】填空:(1)-76的倒数是__________;0.2的倒数是__________;(2)倒数是4的数是__________.(3)倒数是本身的数是__________.3.有理数的乘法运算律(1)乘法交换律:两个数相乘,交换因数的位置,积不变.用字母表示为:a×b=b×a.(2)乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变.用字母表示为:(a×b)×c=a×(b×c).(3)乘法对加法的分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.用字母表示为:a×(b+c)=a×b+a×c.谈重点乘法运算律的运用方法①交换因数的位置时,要连同符号一起交换;②公式中的字母a,b,c可以是正数,也可以是负数和0;③乘法的交换律和结合律对多个因数的乘法也适用;④为了能简便运算,也可以逆用乘法对加法的分配律,即a×b+a×c=a×(b+c).4.与绝对值、相反数、倒数有关的混合运算根据已知的与绝对值、相反数、倒数有关的条件,进行有关的综合计算,其步骤是:(1)利用条件,先求出有关字母的数值或有关式子的数值;(2)将所求的式子变形,使其符合育才新希望●初中数学(七年级上)——有理数主讲:宋瑞点燃新的希望,追寻你的梦想——育才新希望-3-上述条件;(3)将条件代入变形后的式子,按照规定的运算进行计算.【新知巩固4】已知a与b互为倒数,c与d互为相反数,m的绝对值是4,求m×(c+d)+a×b-3×m的值.5.运用有理数乘法运算律进行简便运算有理数的乘法中的简便运算主要是运用乘法的交换律、乘法的结合律和乘法对加法的分配律进行运算.(1)乘法交换律和结合律的运用运用乘法交换律、结合律的情况:①一般将互为倒数的先结合;②将容易约分的先结合.(2)乘法对加法的分配律的运用运用乘法对加法的分配律时注意以下几点:①要把括号外面的因数连同符号与括号内的每一项相乘,它是以后要学的去括号的理论依据.②乘法对加法的分配律可以逆用,即a×b+a×c=a×(b+c).③乘法对加法的分配律可以推广为:a×(b+c+d+e)=a×b+a×c+a×d+a×e,各字母为任意有理数.运用乘法对加法的分配律时,可以先确定符号,再进行计算,或者先利用分配律,再确定符号...