电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

圆锥曲线轨迹方程经典例题VIP免费

圆锥曲线轨迹方程经典例题_第1页
圆锥曲线轨迹方程经典例题_第2页
圆锥曲线轨迹方程经典例题_第3页
轨迹方程经典例题一、轨迹为圆的例题:1、必修2课本P124B组2:长为2a的线段的两个端点在x轴和y轴上移动,求线段AB的中点M的轨迹方程:必修2课本P124B组:已知M与两个定点(0,0),A(3,0)的距离之比为21,求点M的轨迹方程;(一般地:必修2课本P144B组2:已知点M(x,y)与两个定点21,MM的距离之比为一个常数m;讨论点M(x,y)的轨迹方程(分m=1,与m1进行讨论)2、必修2课本P122例5:线段AB的端点B的坐标是(4,3),端点A在圆1)1(22yx上运动,求AB的中点M的轨迹。(2013新课标2卷文20)在平面直角坐标系xOy中,已知圆P在x轴上截得线段长为22,在y轴上截得线段长为32。(1)求圆心的P的轨迹方程;(2)若P点到直线xy的距离为22,求圆P的方程。如图所示,已知P(4,0)是圆x2+y2=36内的一点,A、B是圆上两动点,且满足∠APB=90°,求矩形APBQ的顶点Q的轨迹方程.解:设AB的中点为R,坐标为(x,y),则在Rt△ABP中,|AR|=|PR|.又因为R是弦AB的中点,依垂径定理:在Rt△OAR中,|AR|2=|AO|2-|OR|2=36-(x2+y2)又|AR|=|PR|=22)4(yx所以有(x-4)2+y2=36-(x2+y2),即x2+y2-4x-10=0因此点R在一个圆上,而当R在此圆上运动时,Q点即在所求的轨迹上运动.设Q(x,y),R(x1,y1),因为R是PQ的中点,所以x1=20,241yyx,代入方程x2+y2-4x-10=0,得244)2()24(22xyx-10=0整理得:x2+y2=56,这就是所求的轨迹方程.在平面直角坐标系xOy中,点)3,0(A,直线42:xyl.设圆C的半径为1,圆心在l上.(1)若圆心C也在直线1xy上,过点A作圆C的切线,求切线的方程;(2)若圆C上存在点M,使MOMA2,求圆心C的横坐标a的取值范围.(2013陕西卷理20)已知动圆过定点)0,4(A,且在y轴上截得弦MN的长为8.(1)求动圆圆心的轨迹C的方程;(2)已知点)0,1(B,设不垂直于x轴的直线l与轨迹C交于不同的两点QP,,若x轴是PBQ的角平分线,证明直线l过定点。MBA二、椭圆类型:3、定义法:(选修2-1P50第3题)点M(x,y)与定点F(2,0)的距离和它到定直线8x的距离之比为21,求点M的轨迹方程.(圆锥曲线第二定义)讨论:当这个比例常数不是小于1,而是大于1,或等于1是的情形呢?(对应双曲线,抛物线)4、圆锥曲线第一定义:(选修2-1P50第2题)一个动圆与圆05622xyx外切,同时与圆091622xyx内切,求动圆的圆心轨迹方程。5、圆锥曲线第一定义:点M(00,yx)圆1F9)1(22yx上的一个动点,点2F(1,0)为定点。线段2MF的垂直平分线与1MF相交于点Q(x,y),求点Q的轨迹方程;(注意点2F(1,0)在圆内)6、其他形式:(选修2-1P50例3)设点A,B的坐标分别是(-5,0),(5,0),直线AM,BM相交于点M,且他们的斜率的乘积为94,求点M的轨迹方程:(是一个椭圆)(讨论当他们的斜率的乘积为94时可以得到双曲线)(2013新课标1卷20)已知圆:M1)1(22yx,圆:N9)1(22yx,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C。(1)求C的方程;(2)l是与圆P,圆M都相切的一条直线,l与曲线C交于BA,两点,当圆P的半径最长时,求AB(2013陕西卷文20)已知动点),(yxM到直线4:xl的距离是它到点)0,1(N的距离的2倍。(1)求动点M的轨迹C的方程(2)过点)3,0(P的直线m与轨迹C交于BA,两点,若A是PB的中点,求直线m的斜率。QF1F2MMF1F2三、双曲线类型:8、圆锥曲线第一定义:点M(00,yx)圆1F1)1(22yx上的一个动点,点2F(1,0)为定点。线段2MF的垂直平分线与1MF相交于点Q(x,y),求点Q的轨迹方程;(注意点2F(1,0)在圆外)定义法:(选修2-1P59例5)点M(x,y)与定点F(5,0)的距离和它到定直线516x的距离之比为45,求点M的轨迹方程.(圆锥曲线第二定义)四、抛物线类型:10、定义法:(选修2-1)点M(x,y)与定点F(2,0)的距离和它到定直线2x的距离相等,求点M的轨迹方程。(或:点M(x,y)与定点F(2,0)的距离比它到定直线3x的距离小1,求点M的轨迹方程。)(2013陕西卷文20)已知动点),(yxM到直线4:xl的距离是它到点)0,1(N的距离的2倍。(1)求动点M的轨迹C的方程(2)过点)3,0(P的直线m与轨迹C交于BA,两点,若A是PB的中点,求直线m的斜率已知三点(0,0)O,(2,1)A,(2,1)B,曲线C上任意一点(,)Mxy满足||()2MAMBOMOAOBuuuruuuruuuuruuuruuur。(1)求曲线C的方程;)在直角坐标系xOy中,曲线C1的点...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部