第1页共7页编号:时间:2021年x月x日书山有路勤为径,学海无涯苦作舟页码:第1页共7页数学史研究之微积分的发展这学期,我选修了数学史这门课程,听了一个学期下来,随着老师的精心讲解,我对数学又有了重新的认识,以前只是学习、做题,数学题倒是做了不少,可是真要说对数学的认识,还有很大的差距,甚至连概念都数不清楚,所以,想要学好数学,对数学史的研究必不可少。数学史,顾名思义,分开来理解,数学与历史,他的研究对象涉及到数学以及历史,所以和传统的数学研究方法又不同,他着重于研究过去历史上的数学方法,数到历史,他又为我们展现了数学的一个发展过程,带我们走过了几千年的数学历史,从简单到复杂,逐步为我们剖析,使我们对数学的发展过程有了大概的了解,作为一个当代大学生,我想大家都有必要了解这些,数学在当今社会已变得越来越重要以及普遍,几乎涉及到每个方面,所以学好数学对每一个人的思维锻炼有很大好处。谈到高等数学,大学生能应该都知道,这是大学必修的基础学科。而其中微积分又是重中之重,贯穿整个高等数学,以及其他理工课程。学好微积分,对深入学习一些课程很重要。微积分的创立,被誉为“人类精神的最高胜利”。在18世纪,微积分进一步深入发展,这种发展与广泛的应用紧密交织在一起,刺激和推动了许多数学新分支的产生,从而形成了“分析”这样一个在观念上和方法上都具有鲜明特点的数学领域。在数学史上,18世纪可以说是分析的时代,也是向现代数学过度的重要时期。微积分学的触角几乎遍至当今科学的各个角落,是当代科学大厦的重要石,微积分的发展过程是数学家集体智慧的结晶。微积分的发展大致可分为以下4个阶段:早期萌芽,酝酿时期,创建期,发展完善期。一:早起萌芽微积分,顾名思义,涉及到微分与积分,他们的发展是独立的,接下来我想大家分别介绍。1.积分学积分学的思想萌芽可以追溯到古代,因为面积与体积的计算自古以来一直是数学家们感兴趣的课题,这里介绍几位具有突出贡献的数学家以及他们的学术理第2页共7页第1页共7页编号:时间:2021年x月x日书山有路勤为径,学海无涯苦作舟页码:第2页共7页论,他们的理论代表着数学研究的思想、精神和方法。古希腊数学家欧多克斯(约公元前410-前347年)发展安提丰的“穷竭法”为“设给定两个不相等的量,如果以较大的量减去比它的一半大的量,再以所得量减去比这个量的一半大的量,继续重复这一过程,必有某个量将小于给定的较小的量”。欧多克斯的穷竭法可看作微积分的第一步,但没有明确地用极限概念,也回避了“无穷小”概念,并证明了“棱椎体积是同等同高的棱柱体积的三分之一”。古希腊数学家阿基米德(公元前287-前212)在《处理力学问题的方法》一文中阐明了“平衡法”,即“将需要求积的量(面积、体积等)分成许多微小单元(如微小线段、薄片等),再用另一组微小单元来进行比较,而后一组小单元的总和是可以计算的,但它要借助于杠杆的平衡原理来计算”。实质上“平衡法”是一种原始的“积分法”。阿基米德用“平衡法”证明了球体积公式:球体积=,且等于外切圆柱体积的。中国数学家刘徽(生于公元263年),发明了“割圆术”———“割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体而无所失矣”,并求得圆周率π≈3.14。祖暅(5世纪-6世纪),解决了刘徽绞尽脑汁未果的求球体积问题,祖用的方法是祖氏定理“幂势既同,则积不容异”和“岀入相补原理”,祖暅的球体积公式为V球=(D为球的直径)。2.微分学与积分学相比,微分学的起源则要晚得多,早期应用微分学思想是静止的,不是动态的,与现代微积分相差甚远。二:酝酿时期15,16世纪在欧洲文艺复兴的高潮中,数学的发展与科学的革命紧密结合在一起,提出了以下亟待解决的问题:(1)如何确定非匀速运动物体的速度与加速度及瞬时变化率问题。第3页共7页第2页共7页编号:时间:2021年x月x日书山有路勤为径,学海无涯苦作舟页码:第3页共7页(2)望远镜的设计需要确定透镜曲面上任意一点的法线,求任意曲线切线的连续变化问题。(3)确定炮弹的最大射程及寻求行星轨道的近日点与远日点等涉及的函数极大值、极小值问题。(4)行星沿轨道运动的路程、行星矢径扫过的面积以及物...