电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

排列组合问题的求解策略VIP免费

排列组合问题的求解策略_第1页
排列组合问题的求解策略_第2页
排列组合问题的求解策略_第3页
第1页共5页编号:时间:2021年x月x日书山有路勤为径,学海无涯苦作舟页码:第1页共5页排列组合问题的求解策略长阳职业教育中心张庭松杨子敬[主题词]排列组合求解[摘要]计数问题是现实生活中最普遍排列与组合问题与现实生活密切相关,有关这类问题的解答的基础是两个计数原理,但是在实际求解过程中必须讲究解题策略和方法技巧。解答排列组合问题,首先必须认真审题,明确是属于排列问题还是组合问题,或者属于排列与组合的混合问题,其次要抓住问题的本质特征,灵活运用基本原理和公式进行分析解答。同时还要注意讲究一些策略和方法技巧,使一些看似复杂的问题迎刃而解。下面介绍几种常用的解题方法和策略。一、合理分类与准确分步法解含有约束条件的排列组合问题,应按元素性质进行分类,按事情发生的连续过程分步,保证每步独立,达到分类标准明确,分步层次清楚,不重不漏。例1、五个人排成一排,其中甲不在排头,乙不在排尾,不同的排法有()A.120种B.96种C.78种D.72种分析:由题意可先安排甲,并按其分类讨论:1)若甲在末尾,剩下四人可自由排,有A44种排法;2)若甲在第二,三,四位上,则有A33A31A31种排法,由分类计数原理,排法共有A44+A33A31A31=78种,选C。解排列与组合并存的问题时,一般采用先选(组合)后排(排列)的方法解答。例2、4个不同小球放入编号为1,2,3,4的四个盒中,恰有一空盒的方法有多少种?分析:因恰有一空盒,故必有一盒子放两球。1)选:从四个球中选2个有C42种,从4个盒中选3个盒有C43种;2)排:把选出的2个球看作一个元素与其余2球共3个元素,对选出的3盒作第2页共5页第1页共5页编号:时间:2021年x月x日书山有路勤为径,学海无涯苦作舟页码:第2页共5页全排列有A33种,故所求放法有C42C43A33=144种。二、元素分析与位置分析法对于有附加条件的排列组合问题,一般采用:先考虑满足特殊的元素和位置,再考虑其它元素和位置。例3、用0,2,3,4,5,五个数字,组成没有重复数字的三位数,其中偶数共有()。A.24个B。30个C。40个D。60个[分析]由于该三位数为偶数,故末尾数字必为偶数,又因为0不能排首位,故0就是其中的“特殊”元素,应该优先安排,按0排在末尾和0不排在末尾分两类:1)0排末尾时,有A42个,2)0不排在末尾时,则有A21A31A31个,由分数计数原理,共有偶数A42+A21A31A31=30个,选B。例4、马路上有8只路灯,为节约用电又不影响正常的照明,可把其中的三只灯关掉,但不能同时关掉相邻的两只或三只,也不能关掉两端的灯,那么满足条件的关灯方法共有多少种?分析:表面上看关掉第1只灯的方法有6种,关第二只,第三只时需分类讨论,十分复杂。若从反面入手考虑,每一种关灯的方法对应着一种满足题设条件的亮灯与关灯的排列,于是问题转化为“在5只亮灯的4个空中插入3只暗灯”的问题。故关灯方法种数为C43。三、插空法、捆绑法对于某几个元素不相邻的排列问题,可先将其他元素排好,再将不相邻元素在已排好的元素之间及两端空隙中插入即可。例5、7人站成一排照相,若要求甲、乙、丙不相邻,则有多少种不同的排法?分析:先将其余四人排好有A44种排法,再在这人之间及两端的5个“空”中选三个位置让甲乙丙插入,则有A53种方法,这样共有A44A53=1400种不同排法。第3页共5页第2页共5页编号:时间:2021年x月x日书山有路勤为径,学海无涯苦作舟页码:第3页共5页对于局部“小整体”的排列问题,可先将局部元素捆绑在一起看作一个元,与其余元素一同排列,然后在进行局部排列。例6、7人站成一排照相,甲、乙、丙三人相邻,有多少种不同排法?分析:把甲、乙、丙三人看作一个“元”,与其余4人共5个元作全排列,有A55种排法,而甲乙、丙、之间又有A33种排法,故共有A55A33=7200种排法。四、总体淘汰法对于含有否定字眼的问题,可以从总体中把不符合要求的除去,此时需注意不能多减,也不能少减。例如在例3中,也可用此法解答:五个数字组成三位数的全排列有A53个,排好后发现0不能排首位,而且数字3,5也不能排末位,这两种排法要除去,故有A53−A42−A22A31A31=30个偶数。五、顺序固定问题用“除法”对于某几个元素顺序一定的排列...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

精华资料店+ 关注
实名认证
内容提供者

大量教育教学资料

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部