母题十五应用正弦定理、余弦定理解三角形【母题原题1】【2018天津,文16】在中,内角所对的边分别为.已知.(I)求角的大小;(II)设,求和的值.【考点分析】本小题主要考查同角三角函数的基本关系,两角差的正弦与余弦公式,二倍角的正弦与余弦公式,以及正弦定理、余弦定理等基础知识,考查运算求解能力.满分13分.【答案】(I);(II).由,可得.,故.因此,.【名师点睛】在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.【母题原题2】【2017天津,文15】在中,内角所对的边分别为.已知,.(I)求的值;(II)求的值.【答案】(I);(II).试题解析:(Ⅰ)由及得,由及余弦定理得.【考点】1.正余弦定理;2.三角恒等变换.【名师点睛】高考中经常将三角变换与解三角形知识综合起来命题,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理实现边角互化;以上特征都不明显时,则要考虑两个定理都有可能用到.而三角变换中主要是“变角、变函数名和变运算形式”,其中的核心是“变角”,即注意角之间的结构差异,弥补这种结构差异的依据就是三角公式.【母题原题3】【2016天津,文15】在中,内角所对应的边分别为,已知.(I)求B;(II)若,求sinC的值.【答案】(Ⅰ);(Ⅱ).【解析】试题分析:(Ⅰ)利用正弦定理,将边化为角:,再根据三角形内角范围化简得,;(Ⅱ)问题为“已知两角,求第三角”,先利用三角形内角和为,将考点:同角三角函数的基本关系、二倍角的正弦公式、两角和的正弦公式以及正弦定理【名师点睛】三角函数是以角为自变量的函数,因此解三角函数题,首先从角进行分析,善于用已知角表示所求角,即注重角的变换.角的变换涉及诱导公式、同角三角函数关系、两角和与差公式、二倍角公式、配角公式等,选用恰当的公式,是解决三角问题的关键,明确角的范围,对开方时正负取舍是解题正确的保证.【母题原题4】【2015天津,文16】△ABC中,内角A,B,C所对的边分别为a,b,c,已知△ABC的面积为,(I)求a和sinC的值;(II)求的值.【答案】(I)a=8,;(II).(II),【考点定位】本题主要考查三角变换及正弦定理、余弦定理等基础知识,考查基本运算求解能力.【名师点睛】解三角形问题实质是附加条件的三角变换,因此在解三角形问题的处理中,正弦定理、余弦定理就起到了适时、适度转化边角的作用,分析近几年的高考试卷,有关的三角题,大部分以三角形为载体考查三角变换.【命题意图】考查正弦定理、余弦定理及三角形面积公式,考查三角函数中同角三角函数关系、诱导公式、两角和与差三角函数公式、二倍角公式在恒等变形中的应用,考查化简变形能力、数形结合思想、等价转换思想.【命题规律】解三角形是高考的必考内容,重点是正弦定理、余弦定理和三角形面积公式,考题灵活多样,选择题、填空题和解答题都有考到,难度中低中档题均有.以求边长、求角(三角函数值)或研究三角形的面积为目标,往往是利用正弦定理、余弦定理和三角形面积公式进行有效的边角转换,利用和差倍半的三角函数公式,对等式进行恒等变形,有时会结合角的范围,研究三角函数式的取值范围等.【答题模板】(1)通过正弦定理实施边角转换;(II)通过余弦定理实施边角转换;(3)通过三角变换找出角之间的关系;(4)通过三角函数值符号的判断以及正、余弦函数的有界性进行讨论;(5)若涉及两个(或两个以上)三角形,这时需作出这些三角形,先解条件多的三角形,再逐步求出其他三角形的边和角,其中往往用到三角形内角和定理,有时需设出未知量,从几个三角形中列出方程(组)求解.【方法总结】1.三角形中判断边、角关系的具体方法:(1)通过正弦定理实施边角转换;(II)通过余弦定理实施边角转换;(3)通过三角变换找出角之间的关系;(4)通过三角函数值符号的判断以及正、余弦函数的有界性进行讨论;(5)若...