概率【高考考情解读】1.古典概型和几何概型的基本应用是高考的重点,选择题或填空题主要以考查几何概型、古典概型为主,试题难度较小,易于得分.2.解答题型中的古典概型问题常常与概率的基本运算性质,如互斥事件的概率加法公式、对立事件的减法公式等综合考查,试题难度不大,易于得满分.3.近几年高考题对概率问题的命制愈加地倾向与统计问题综合考查,涉及的统计问题有抽样、样本估计总体、回归分析和独立性检验,试题难度中等,考查知识点的同时也侧重考查逻辑思维能力、知识的综合应用能力和理解、分析问题的能力.1.概率的五个基本性质(1)随机事件A的概率:0≤P(A)≤1.(2)必然事件的概率为1.(3)不可能事件的概率为0.(4)如果事件A与事件B互斥,则P(A∪B)=P(A)+P(B).(5)如果事件A与事件B互为对立事件,那么P(A∪B)=P(A)+P(B)=1,即P(A)=1-P(B).2.两种常见的概型(1)古典概型①特点:有限性,等可能性.②概率公式:P(A)=.(2)几何概型①特点:无限性,等可能性.②概率公式:P(A)=.考点一古典概型例1(2013·山东)某小组共有A,B,C,D,E五位同学,他们的身高(单位:米)及体重指标(单位:千克/米2)如下表所示:ABCDE身高1.691.731.751.791.82体重指标19.225.118.523.320.9(1)从该小组身高低于1.80的同学中任选2人,求选到的2人身高都在1.78以下的概率;(2)从该小组同学中任选2人,求选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率.解(1)从身高低于1.80的4名同学中任选2人,其一切可能的结果组成的基本事件有:(A,B),(A,C),(A,D),(B,C),(B,D),(C,D)共6“个.设选到的2人身高都在1.78”以下为事件M,其包括的事件有3个,故P(M)==.(2)从小组5名同学中任选2人,其一切可能的结果组成的基本事件有:(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E)共10个.“设选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)”为事件N,且事件N包括事件有:(C,D),(C,E),(D,E)共3个.则P(N)=.求古典概型概率的步骤(1)反复阅读题目,收集题目中的各种信息,理解题意;(2)判断试验是否为古典概型,并用字母表示所求事件;(3)利用列举法求出总的基本事件的个数n及事件A中包含的基本事件的个数m;(4)计算事件A的概率P(A)=.(1)(2012·安徽)袋中共有6个除了颜色外完全相同的球,其中有1个红球,2个白球和3个黑球.从球中任取两球,两球颜色为一白一黑的概率等于()A.B.C.D.答案B解析利用古典概型求解.设袋中红球用a表示,2个白球分别用b1,b2表示,3个黑球分别用c1,c2,c3表示,则从袋中任取两球所含基本事件为:(a,b1),(a,b2),(a,c1),(a,c2),(a,c3),(b1,b2),(b1,c1),(b1,c2),(b1,c3),(b2,c1),(b2,c2),(b2,c3),(c1,c2),(c1,c3),(c2,c3),共15个.两球颜色为一白一黑的基本事件有:(b1,c1),(b1,c2),(b1,c3),(b2,c1),(b2,c2),(b2,c3),共6个.∴其概率为=.故选B.(2)甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b,其中a,b∈{1,2,3,4,5,6},若|a-b|≤1,就称甲乙“”“”心有灵犀.现任意找两人玩这个游戏,则他们心有灵犀的概率为()A.B.C.D.答案D解析根据题目条件知所有的数组(a,b)共有62=36组,而满足条件|a-b|≤1的数组(a,b)有:(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),(1,2),(2,1),(2,3),(3,2),(3,4),(4,3),(4,5),(5,4),(5,6),(6,5),共有16组,根据古典概型的概率公式知所求的概率为P==.故选D.(3)盒中有6个小球,其中3个白球,记为a1,a2,a3,2个红球,记为b1,b2,1个黑球,记为c1,除了颜色和编号外,球没有任何区别.①求从盒中取一球是红球的概率;②从盒中取一球,记下颜色后放回,再取一球,记下颜色,若取白球得1分,取红球得2分,取黑球得3分,求两次取球得分之和为5分的概率.解①所有基本事件为:a1,a2,a3,b1,b2,c1共计6种.“”记从盒中取一球是红球为事件A,事件A包含的基本事件为:b1,b2,∴P(A)==.∴从盒中取一球是红球的概率为.②“记两次取球得分之和为5”分为...