第1页共8页编号:时间:2021年x月x日书山有路勤为径,学海无涯苦作舟页码:第1页共8页因应高效率高功率密度转换器的功率晶体管发展2010-4-71:40:50作者:张家瑞、林锦宏、林星谕台湾英飞凌工业与多元电子事业处资深应用工程师来源:半导体国际核心提示:对各式电源转换器的规格要求,除高功率密度及高转换效率外,低待机功率损耗及满足特定额定输出功率下的电源转换效率,更是目前被强烈要求的重点。近年来,环保及节能减碳的概念方兴未艾,缘自于世人对资源有限及爱护地球之心的觉醒,政策上,各国政府及相关机构制定相关奖励办法及限制法规的作法;技术上,诸多企业也广为利用本身的先进技术开发出各种新式的发电装置或技术如太阳能、风力、潮汐发电;新式节能装置如LED灯、油电混合引擎、电动车…等等,其中太阳能、风力及其他发电装置产生的电源无法直接与电力系统并联连接,必须仰赖高频切换电源转换器(Highfrequencyswitchingconverter),配合适当的功率及能量传递控制,才能够让这些新式发电装置发挥更佳的效能;LED、电动马达所需之电压,也必须由高频切换电源转换器依不同供电来源及功率控制方式,进行电压准位及电源形式的转换。由此可知,这些新式发电/节能技术及装置的背后,高频切换电源转换器扮演着极重要的角色。高频切换电源转换技术,乃是利用半导体功率组件以“高频切换”方式,结合各式能量转换组件如变压器、储能组件如电感及电容,达到高效率、高功率密度的要求。为求简便,本文以下称之电源转换技术。电源转换技术的发展着重在达到高功率密度及高转换效率,即为所谓的“轻、薄、短、小”。电源转换技术发展初期仅应用于宇宙飞船上,依各式仪器设备需求,电源转换器将宇宙飞船上的电池,转换出不同电压形式及电压准位的电源。高功率密度/高转换效率的电源转换装置,除能节省能源的转换损失外,更降低转换器的重量及体积,进一步节省宇宙飞船所需要的燃料。直至今日,电源转换技术不再独厚于太空或军事用途,早己广泛应用于信息设备、消费电子、家电及工业之中,其一是上述之环保节能概念的抬头及各相关标准制订机构因应各项应用及未来需求所制定之更严格的规范要求,其二,是由于半导体功率组件及各种磁性组件、储能组件的技术更臻于成熟,价格低廉。对各式电源转换器的规格要求,除高功率密度及高转换效率外,低待机功率损耗及满足特定额定输出功率下的电源转换效率,更是目前被强烈要求的重点。表一为目前各式电源转换器之电源转换器效率要求规格。习知的解决方案,除使用特殊的PWM控制如脉冲模式(BurstMode)、脉波省略模式(Pulseskipping),以减少功率晶体管的切换次数或切换频率达到高效率外,也必须仰赖具有较低功率损耗的功率晶体管,方能达到较高的电源转换效率,符合日益严谨的电源转换效率规范。综观功率晶体管的技术发展可分为两个方向:“晶粒(die)”技术及“封装(packaging)技术”。(1)晶粒技术的发展主轴是以更低的导通电阻、更快的切换速度及更小的极间电容,大幅降低功率晶体管的导通损耗、切换损耗及其他可能损耗;第2页共8页第1页共8页编号:时间:2021年x月x日书山有路勤为径,学海无涯苦作舟页码:第2页共8页(2)封装技术的发展重心是改进或提出新式封装结构及技术,降低封装所造成的寄生电阻及寄生电感,除降低导通电阻、提高切换速度外,并能提升功率晶体管的散热能力及最大功率承受能力。图1为低电压及高电压功率晶体管之导通电阻分布图,其中,对高电压功率晶体管而言,晶粒技术发展的重要性远胜于封装技术,肇因于导通电阻的贡献主要来自晶粒而非封装;低电压功率晶体管的导通电阻分布,取决于不同的封装方式,其最低导通电阻亦会受到封装方式所限制。图1.功率晶体管之导通电阻分布图。英飞凌科技早在数十年前就投入大量人力资源深耕半导体技术,以德国精湛工艺打造半导体组件,开发出各式能够有效大幅提升电源转换效率之功率组件,首先在1996年推出第一代低电压功率晶体管SIPMOSTM系列,其后以沟渠式结构(Trench)为基础,陆续推出了OptiMOSTM、OptiMOSTM2、OptiMOSTM3及OptiMOSTMGen5等高效能低压功率晶体管,其导通电阻可低于1mΩ以下...