电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学总复习第十一章 计数原理、随机变量及分布列第6课时 离散型随机变量的均值与方差VIP免费

高考数学总复习第十一章 计数原理、随机变量及分布列第6课时 离散型随机变量的均值与方差_第1页
高考数学总复习第十一章 计数原理、随机变量及分布列第6课时 离散型随机变量的均值与方差_第2页
高考数学总复习第十一章 计数原理、随机变量及分布列第6课时 离散型随机变量的均值与方差_第3页
考情分析考点新知离散型随机变量的分布列、期望、方差和概率的计算问题结合在一起进行考查,这是当前高考命题的热点,因为概率问题不仅具有很强的综合性,而且与实际生产、生活问题密切联系,能很好地考查分析、解决问题的能力.①了解取有限值的离散型随机变量的均值、方差的意义.②会求离散型随机变量的均值、方差和标准差,并能解决有关实际问题.1.(选修23P67习题4改编)某单位有一台电话交换机,其中有8个分机.设每个分机在1h内平均占线10min,并且各个分机是否占线是相互独立的,则任一时刻占线的分机数目X的数学期望为________.答案:解析:每个分机占线的概率为,X~B,即X服从二项分布,所以期望E(X)=8×=.2.(选修23P66例2改编)有一批数量很大的商品的次品率为1%,从中任意地连续取出200件商品,设其中次品数为X,则E(X)=________,V(X)=________.答案:21.98解析:X~B(200,0.01),所以期望E(X)=200×0.01=2,V(X)=200×0.01×(1-0.01)=1.98.3.(选修23P71习题4改编)某人进行射击,每次中靶的概率均为0.8,现规定:若中靶就停止射击,若没中靶,则继续射击,如果只有3发子弹,则射击数X的均值为________.(填数字)答案:1.24解析:射击次数X的分布列为X123P0.80.160.04∴E(X)=0.8×1+0.16×2+0.04×3=1.24.4.(选修23P71习题1改编)随机变量X的分布列如下:X-101Pabc其中a,b,c成等差数列,若E(X)=,则方差V(X)的值是________.答案:解析:a、b、c成等差数列,有2b=a+c,又a+b+c=1,E(X)=-1×a+1×c=c-a=.得a=,b=,c=,∴V(X)=2×+2×+2×=.5.一高考考生咨询中心有A、B、C三条咨询热线.已知某一时刻热线A、B占线的概率均为0.5,热线C占线的概率为0.4,各热线是否占线相互之间没有影响,假设该时刻有ξ条热线占线,则随机变量ξ的期望为________.答案:1.4解析:随机变量ξ可能取的值为0、1、2、3.依题意,得P(ξ=0)=0.15,P(ξ=1)=0.4,P(ξ=2)=0.35,P(ξ=3)=0.1∴ξ的分布列为ξ0123P0.150.40.350.1∴它的期望为E(ξ)=0×0.15+1×0.4+2×0.35+3×0.1=1.4.1.均值(1)若离散型随机变量ξ的分布列为:ξx1x2…xnPp1p2…pn则称E(ξ)=x1p1+x2p2+…+xnpn为ξ的均值或数学期望,简称期望.(2)离散型随机变量的期望反映了离散型随机变量取值的平均水平.(3)数学期望的性质.E(c)=c,E(aξ+b)=aEξ+b(a、b、c为常数).2.方差(1)若离散型随机变量ξ所有可能的取值是x1,x2,…,xn且这些值的概率分别是p1,p2,…,pn,则称:V(ξ)=(x1-E(ξ))2p1+(x2-E(ξ))2p2+…+(xn-E(ξ))2pn为ξ的方差.(2)σ=,叫标准差.(3)随机变量ξ的方差反映了ξ取值的稳定性.(4)方差的性质a、b为常数,则V(aξ+b)=a2Vξ.3.若ξ~B(n,p),则E(ξ)=np,V(ξ)=np(1-p).4.期望与方差的关系均值(期望)反映了随机变量取值的平均水平,而方差则表现了随机变量所取的值对于它的均值(期望)的集中与离散的程度,因此二者的关系是十分密切的,且有关系式V(ξ)=E(ξ2)+(E(ξ))2.[备课札记]题型1离散型随机变量的期望例1已知离散型随机变量ξ1的概率分布为ξ11234567P离散型随机变量ξ2的概率分布为ξ23.73.83.944.14.24.3P求这两个随机变量数学期望、方差与标准差.解:E(ξ1)=1×+2×+…+7×=4;V(ξ1)=(1-4)2×+(2-4)2×+…+(7-4)2×=4,σ1==2.E(ξ2)=3.7×+3.8×+…+4.3×=4;V(ξ2)=0.04,σ2=)=0.2.甲、乙两射手在同一条件下进行射击,分布列如下:射手甲击中环数8,9,10的概率分别为0.2,0.6,0.2;射手乙击中环数8,9,10的概率分别为0.4,0.2,0.4.用击中环数的期望与方差比较两名射手的射击水平.解:Eξ1=8×0.2+9×0.6+10×0.2=9,V(ξ1)=(8-9)2×0.2+(9-9)2×0.6+(10-9)2×0.2=0.4;同理有E(ξ2)=9,V(ξ2)=0.8.由上可知,E(ξ1)=E(ξ2),V(ξ1)

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

文章天下+ 关注
实名认证
内容提供者

各种文档应有尽有

确认删除?
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群