电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学一轮复习 第十章 计数原理、概率、随机变量 10.9 离散型随机变量的均值与方差课时提升作业 理试题VIP免费

高考数学一轮复习 第十章 计数原理、概率、随机变量 10.9 离散型随机变量的均值与方差课时提升作业 理试题_第1页
高考数学一轮复习 第十章 计数原理、概率、随机变量 10.9 离散型随机变量的均值与方差课时提升作业 理试题_第2页
高考数学一轮复习 第十章 计数原理、概率、随机变量 10.9 离散型随机变量的均值与方差课时提升作业 理试题_第3页
离散型随机变量的均值与方差(25分钟60分)一、选择题(每小题5分,共25分)1.(2016·马鞍山模拟)设X为随机变量,X~B,若随机变量X的数学期望E(X)=2,则P(X=2)等于()A.B.C.D.【解析】选D.因为X~B,E(X)==2,所以n=6,所以P(X=2)==.2.(2016·中山模拟)已知离散型随机变量X的分布列为X-101Px则X的数学期望E(X)=()A.-B.C.D.【解析】选B.依题意得:+x+=1,所以x=.E(X)=(-1)×+0×+1×=.【加固训练】(2016·秦皇岛模拟)签盒中有编号为1,2,3,4,5,6的六支签,从中任意取3支,设X为这3支签的号码之中最大的一个,则X的数学期望为()A.5B.5.25C.5.8D.4.6【解析】选B.由题意可知,X可以取3,4,5,6,P(X=3)==,P(X=4)==,P(X=5)==,P(X=6)==.由数学期望的定义可求得E(X)=5.25.3.(2016·保定模拟)“”某班举行了一次心有灵犀的活动,教师把一张写有成语的纸条出示给A组的某个同学,这个同学再用身体语言把成语的意思传递给本组其他同学.若小组内同学甲猜对成语的概率是0.4,同学乙猜对成语的概率是0.5,且规定猜对得1分,猜不对得0分,则这两个同学各猜1次,得分之和X(单位:分)的数学期望为()A.0.9B.0.8C.1.2D.1.1【解题提示】先求X的分布列,再代入E(X)的公式计算.【解析】选A.由题意得X=0,1,2,则P(X=0)=0.6×0.5=0.3,P(X=1)=0.4×0.5+0.6×0.5=0.5,P(X=2)=0.4×0.5=0.2,所以E(X)=0×0.3+1×0.5+2×0.2=0.9(分).4.体育课的排球发球项目考试的规则是:每位学生最多可发球3次,一旦发球成功,则停止发球,否则一直发到3次为止.设学生一次发球成功的概率为p(p≠0),发球次数为X,若X的数学期望E(X)>1.75,则p的取值范围是()A.(0,)B.(,1)C.(0,)D.【解析】选C.由已知条件可得P(X=1)=p,P(X=2)=(1-p)p,P(X=3)=(1-p)2p+(1-p)3=(1-p)2,则E(X)=P(X=1)+2P(X=2)+3P(X=3)=p+2(1-p)p+3(1-p)2=p2-3p+3>1.75,解得p>或p<,又由p∈(0,1),可得p∈(0,).5.(2016·泸州模拟)利用下列盈利表中的数据进行决策,应选择的方案是()A.A1B.A2C.A3D.A4【解题提示】先求出四种方案A1,A2,A3,A4盈利的均值,再结合均值大小作出判断.【解析】选C.方案A1,A2,A3,A4盈利的均值分别是:A1:50×0.25+65×0.30+26×0.45=43.7;A2:70×0.25+26×0.30+16×0.45=32.5;A3:-20×0.25+52×0.30+78×0.45=45.7;A4:98×0.25+82×0.30-10×0.45=44.6.所以A3盈利的均值最大,所以应选择A3.二、填空题(每小题5分,共15分)6.有一批产品,其中有12件正品和4件次品,有放回地任取3件,若取到一件次品得2分,用Y表示得分数,则D(Y)=.【解析】设X表示取到的次品数,则Y=2X.由题意知取到次品的概率为,所以X~B,D(X)=3××=,故D(Y)=D(2X)=4D(X)=4×=.答案:7.(2016·武汉模拟)某射手射击所得环数ξ的分布列如下:ξ78910Px0.10.3y已知ξ的期望E(ξ)=8.9,则y的值为.【解析】依题意得即解得答案:0.4【加固训练】已知随机变量ξ的分布列为ξ123P0.5xy若E(ξ)=,则D(ξ)=.【解析】由分布列性质,得x+y=0.5.又E(ξ)=,得2x+3y=,可得x=,y=.D(ξ)=·+·+·=.答案:8.(2016·张家界模拟)已知随机变量ξ所有的取值为1,2,3,对应的概率依次为p1,p2,p1,若随机变量ξ的方差D(ξ)=,则p1+p2的值是.【解题提示】由分布列的性质可得2p1+p2=1,由数学期望的计算公式可得E(ξ)的值,由方差的计算公式可得D(ξ),进而即可解得p1,p2.【解析】由分布列的性质可得2p1+p2=1,(*)由数学期望的计算公式可得E(ξ)=1×p1+2×p2+3×p1=2(2p1+p2)=2.由方差的计算公式可得D(ξ)=(1-2)2p1+(2-2)2p2+(3-2)2p1=2p1=,解得p1=,把p1=代入(*)得2×+p2=1.解得p2=,所以p1+p2=+=.答案:三、解答题(每小题10分,共20分)9.(2016·广州模拟)甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为2,3,4,乙袋中红色、黑色、白色小球的个数均为3,某人用左右手分别从甲、乙两袋中取球.(1)若左右手各取一球,求两只手中所取的球颜色不同的概率.(2)若左右手依次各取两球,称同一手中两球颜色相同的取法为成功取法,记两次取球的成功取法次数为随机变量X,求X的分布列和数学期望.【解析】(1)设事件A“”为两手所取的球不同色,则P(A)=1-=.(2)依题意,X的可能取值为0,1,2.左手所取的两球颜色相同的概率为=,右手所取的两球颜色相同的概率为=,P(X=0)==×=,P...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部