电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学大二轮复习 第二编 专题整合突破 专题四 数列 第一讲 等差与等比数列适考素能特训 文-人教版高三全册数学试题VIP免费

高考数学大二轮复习 第二编 专题整合突破 专题四 数列 第一讲 等差与等比数列适考素能特训 文-人教版高三全册数学试题_第1页
高考数学大二轮复习 第二编 专题整合突破 专题四 数列 第一讲 等差与等比数列适考素能特训 文-人教版高三全册数学试题_第2页
高考数学大二轮复习 第二编 专题整合突破 专题四 数列 第一讲 等差与等比数列适考素能特训 文-人教版高三全册数学试题_第3页
专题四数列第一讲等差与等比数列适考素能特训文一、选择题1.[2015·重庆高考]在等差数列{an}中,若a2=4,a4=2,则a6=()A.-1B.0C.1D.6答案B解析设数列{an}的公差为d,由a4=a2+2d,a2=4,a4=2,得2=4+2d,d=-1,∴a6=a4+2d=0.故选B.2.[2016·山西四校联考]等比数列{an}的前n项和为Sn,若公比q>1,a3+a5=20,a2a6=64,则S5=()A.31B.36C.42D.48答案A解析由等比数列的性质,得a3a5=a2a6=64,于是由且公比q>1,得a3=4,a5=16,所以解得所以S5==31,故选A.3.[2016·唐山统考]设Sn是等比数列{an}的前n项和,若=3,则=()A.2B.C.D.1或2答案B解析设S2=k,S4=3k,由数列{an}为等比数列,得S2,S4-S2,S6-S4为等比数列,∴S2=k,S4-S2=2k,S6-S4=4k,∴S6=7k,S4=3k,∴==,故选B.4.[2015·浙江高考]已知{an}是等差数列,公差d不为零,前n项和是Sn.若a3,a4,a8成等比数列,则()A.a1d>0,dS4>0B.a1d<0,dS4<0C.a1d>0,dS4<0D.a1d<0,dS4>0答案B解析由a=a3a8,得(a1+2d)(a1+7d)=(a1+3d)2,整理得d(5d+3a1)=0,又d≠0,∴a1=-d,则a1d=-d2<0,又 S4=4a1+6d=-d,∴dS4=-d2<0,故选B.5.正项等比数列{an}满足:a3=a2+2a1,若存在am,an,使得am·an=16a,m,n∈N*,则+的最小值为()A.2B.16C.D.答案C解析设数列{an}的公比为q,a3=a2+2a1⇒q2=q+2⇒q=-1(舍)或q=2,∴an=a1·2n-1,am·an=16a⇒a·2m+n-2=16a⇒m+n=6, m,n∈N*,∴(m,n)可取的数值组合为(1,5),(2,4),(3,3),(4,2),(5,1),计算可得,当m=2,n=4时,+取最小值.6.[2016·吉林长春质量监测]设数列{an}的前n项和为Sn,且a1=a2=1,{nSn+(n+2)an}为等差数列,则an=()A.B.C.D.答案A解析设bn=nSn+(n+2)an,则b1=4,b2=8,{bn}为等差数列,所以bn=4n,即nSn+(n+2)an=4n,Sn+an=4.当n≥2时,Sn-Sn-1+an-an-1=0,所以an=an-1,即2·=,又因为=1,所以是首项为1,公比为的等比数列,所以=n-1(n∈N*),an=(n∈N*),故选A.二、填空题7.[2015·广东高考]在等差数列{an}中,若a3+a4+a5+a6+a7=25,则a2+a8=________.答案10解析利用等差数列的性质可得a3+a7=a4+a6=2a5,从而a3+a4+a5+a6+a7=5a5=25,故a5=5,所以a2+a8=2a5=10.8.[2016·辽宁质检]设数列{an}的前n项和为Sn,且a1=1,an+1=2Sn+3,则S4=________.答案66解析依题an=2Sn-1+3(n≥2),与原式作差得,an+1-an=2an,n≥2,即an+1=3an,n≥2,可见,数列{an}从第二项起是公比为3的等比数列,a2=5,所以S4=1+=66.9.[2016·云南统考]在数列{an}中,an>0,a1=,如果an+1是1与的等比中项,那么a1++++…+的值是________.答案解析由题意可得,a=⇒(2an+1+anan+1+1)(2an+1-anan+1-1)=0,又an>0,∴2an+1-anan+1-1=0,又2-an≠0,∴an+1=⇒an+1-1=,又可知an≠1,∴=-1,∴是以为首项,-1为公差的等差数列,∴=-(n-1)=-n-1⇒an=⇒==-,∴a1++++…+=1-+-+-+-+…+-=.三、解答题10.[2016·蚌埠质检]已知数列{an}是等比数列,Sn为数列{an}的前n项和,且a3=3,S3=9.(1)求数列{an}的通项公式;(2)设bn=log2,且{bn}为递增数列,若cn=,求证:c1+c2+c3+…+cn<1.解(1)设该等比数列的公比为q,则根据题意有3·=9,从而2q2-q-1=0,解得q=1或q=-.当q=1时,an=3;当q=-时,an=3·n-3.(2)证明:若an=3,则bn=0,与题意不符,故an=3n-3,此时a2n+3=3·2n,∴bn=2n,符合题意.∴cn===-,从而c1+c2+c3+…+cn=1-<1.11.成等差数列的三个正数的和等于15,并且这三个数分别加上2,5,13后成为等比数列{bn}中的b3,b4,b5.(1)求数列{bn}的通项公式;(2)数列{bn}的前n项和为Sn,求证:数列是等比数列.解(1)设成等差数列的三个正数分别为a-d,a,a+d.依题意,得a-d+a+a+d=15,解得a=5.所以{bn}中的b3,b4,b5依次为7-d,10,18+d.依题意,有(7-d)(18+d)=100,解得d=2或d=-13(舍去).故{bn}的第3项为5,公比为2,由b3=b1·2...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部