Matlab编程作业姓名:余振学号:13102020217专业:结构工程指导老师:杨春侠习题一:承受恒载和楼面活荷载的钢筋混凝土轴心受压短柱,已知恒载产生的轴向力M为正态分布,活载产生的轴向力M为极值I型分布,截面承载能力(抗力)R为对数正态分布,统计参数分别为HnG=1159.1kN,OM=81.1kN,μn=765.5kN,on=222kN,μp=4560kN,σ=729.6kN,极限状态方程为Z=R一Ng一NL=0,求可靠指标β和设计验算点。方法一muX=[4560,765.5,1159.1];%均值cvX=[729.6/4560,222/765.5,81.1/1159.1];%变异系数bbeta=JC_3(muX,cvX)M-file:functionbbeta=JC_3(muX,cvX)sigmaX=cvX.*muX;%标准差sLn=sqrt(log(1+(sigmaX(1)/muX(1))^2));mLn=log(muX(1)/sqrt(1+cvX(1)“2));aEv=pi/(sqrt(6)*sigmaX(2));%求极值I型分布的参数psi=0.5772uEv=muX(2)-psi/aEv;sigmaX1=sigmaX;x=muX;m=0;b0=0;bl=3.2;whileabs((b1-b0)/b1)>le-3%记录循环次数%可靠度的初始值%可靠度的第二个值sigmaX1(1)=sLn*muX(1);%抗力R当量正态化muX1(1)=muX(1)*(1+mLn-log(muX(1)));t=exp((-aEv)*(muX(2)-uEv));%活载L当量正态化f1=aEv*exp((-aEv)*(muX(2)-uEv)-t);f2=exp(-t);a=norminv(f2):%标准正态概率密度反函数求值y=normpdf(a);%标准正态概率密度求值sigmaX1(2)=y/f1;muX1(2)=muX(2)-a*sigmaX1(2);sigmaX1=[sigmaX1(1);sigmaX1(2);sigmaX1(3)];w=norm(sigmaX1);bbeta=(muX1(1)-muX1(2)-muX1(3))/w;%求bbeta值Alphar=-sigmaX1(1)/w;%求方向余弦Alphal=sigmaX1(2)/w;Alphag=sigmaX1(3)/w;x(1)=muX1(1)+Alphar*bbeta*sigmaX1(1):%求循环后验算点的坐标值x(2)=muX1(2)+Alphal*bbeta*sigmaX1(2);x(3)=muX1(3)+Alphag*bbeta*sigmaX1(3);x=[x(1);x(2);x(3)];muX=x;m=m+1;b0=bl;b1=bbeta;enddisp(结果:)fprintf(循环次数m:m=%d\n',m);fprintf(可靠度指标贝塔:bbeta=%1.2f\n',bbeta);fprintf(最后验算点坐标:muX=[%1.2f;%1.2f;%1.2f]\n’,muX);结果:循环次数m:m=6可靠度指标贝塔:bbeta=3.959最后验算点坐标:muX=[3011.84;1817.98;1193.86]方法二muX=[4560,765.5,1159.1];cvX=[729.6/4560,222/765.5,81.1/1159.1];bbeta=JC_3(muX,cvX)M-file如下:functionbbeta=JC_3(muX,cvX)sigmaX=cvX.*muX;sLn=sqrt(log(1+(sigmaX(1)/muX(1))^2));mLn=log(muX(1))-sLn*2/2;aEv=sqrt(6)*sigmaX(2)/pi;uEv=psi(1)*aEv+muX(2);muX1=muX;sigmaX1=sigmaX;x=muX;normX=eps;m=0;whileabs(norm(x)-normX)/normX>1e-6normX=norm(x);sigmaX1(1)=sLn*muX(1);%记录循环次数%向量x二范数的前后两个值的相对误差%计算x的二范数%抗力R的当量正态化muX1(1)=muX(1)*(1+mLn-log(muX(1)));t=exp((-1/aEv)*(muX(2)-uEv));%活载L的当量正态化f1=(1/aEv)*exp((-1/aEv)*(muX(2)-uEv)-t);f2=exp(-t);a=norminv(f2);y=normpdf(a):sigmaX1(2)=y/f1;muX1(2)=muX(2)-a*sigmaX1(2):w=norm(sigmaX1);bbeta=(muX1(1)-muX1(2)-muX1(3))/w;Alphar=-sigmaX1(1)/w;Alphal=sigmaX1(2)/w;Alphag=sigmaX1(3)/w;x(1)=muX1(1)+Alphar*bbeta*sigmaX1(1);x(2)=muX1(2)+Alphal*bbeta*sigmaX1(2);x(3)=muX1(3)+Alphag*bbeta*sigmaX1(3);x=[x(1);x(2);x(3)];muX=x;m=m+1;endfprintf(循环次数m:m=%d\n’',m);fprintf(可靠度指标贝塔:bbeta=%1.2f\n',bbeta);fprintf(最后验算点坐标:muX=[%1.2f;%1.2f;%1.2f]\n',muX);结果:循环次数m:m=7可靠度指标贝塔:bbeta=3.96最后验算点坐标:muX=[3012.13;1818.30;1193.83]方法三muX=[4560,765.5,1159.1];cvX=[729.6/4560,222/765.5,81.1/1159.1];bMb-fetilea=C3:(muX,cvX)functionbbeta=JC_3(muX,cvX)sigmaX=cvX.*muX;sLn=sqrt(log(1+(sigmaX(1)/muX(1))^2));mLn=log(muX(1)/sqrt(1+cvX(1)^2));aEv=pi/(sgrt(6)*sigmaX(2));uEv=psi(1)/aEv+muX(2);muX1=muX;%muX:均值和cvX:变异系数%计算标准差以便下面使用%求极值I型分布的参数%psi(1)=-0.5772sigmaX1=sigmaX;x=muX;fori=1:10sigmaX1(1)=sLn*muX(1);muX1(1)=muX(1)*(1+mLn-log(muX(1))):t=exp((-aEv)*(muX(2)-uEv));fl=aEv*exp((-aEv)*(muX(2)-uEv)-t);f2=exp(-t);a=norminv(f2);y=normpdf(a);sigmaX1(2)=y/f1;muX1(2)...