直角三角形全等判定(基础)【学习目标】1.理解和掌握判定直角三角形全等的一种特别方法——“斜边,直角边”(即“HL”).2.能熟练地用判定一般三角形全等的方法及判定直角三角形的特别方法判定两个直角三角形全等. 【要点梳理】要点一、判定直角三角形全等的一般方法由三角形全等的条件可知,对于两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,这两个直角三角形就全等了.这里用到的是“AAS”,“ASA”或“SAS”判定定理.要点二、判定直角三角形全等的特别方法——斜边,直角边定理在两个直角三角形中,有斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”).这个判定方法是直角三角形所独有的,一般三角形不具备.要点诠释:(1)“HL”从顺序上讲是“边边角”对应相等,由于其中含有直角这个特别条件,所以三角形的形状和大小就确定了. (2)判定两个直角三角形全等的方法共有 5 种:SAS、ASA、AAS、SSS、HL.证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.(3)应用“斜边、直角边”判定两个直角三角形全等的过程中要突出直角三角形这个条件,书写时必须在两个三角形前加上“Rt”.【典型例题】类型一、直角三角形全等的判定——“HL”1、 已知:如图,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=CD:(2)AD∥BC.【思路点拨】先由“HL”证 Rt△ABD≌Rt△CDB,再由内错角相等证两直线平行.【答案与解析】证明:(1) AB⊥BD,CD⊥BD, ∴∠ABD=∠CDB=90° 在 Rt△ABD 和 Rt△CDB 中, ∴Rt△ABD≌Rt△CDB(HL) ∴AB=CD(全等三角形对应边相等) (2)由∠ADB=∠CBD ∴AD∥BC .ADBCBDDB=【总结升华】证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.举一反三:【变式】已知:如图,AE⊥AB,BC⊥AB,AE=AB,ED=AC.求证:ED⊥AC.【答案】证明: AE⊥AB,BC⊥AB, ∴∠DAE=∠CBA=90° 在 Rt△DAE 与 Rt△CBA 中, ∴Rt△DAE≌Rt△CBA (HL) ∴∠E=∠CAB ∠CAB+∠EAF=90°, ∴∠E+∠EAF=90°,即∠AFE=90° 即 ED⊥AC.2、 推断满足下列条件的两个直角三角形是否全等,不全等的画“×”,全等的注明理由:(1)一个锐角和这个角的对边对应相等;( )(2)一个锐角和斜边对应相等; ( )(3)两直角边对应相等; ( )(4)一条直角边和斜...