电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

13.1.1轴对称(第1课时)

13.1.1轴对称(第1课时)13.1.1轴对称(第1课时)13.1.1轴对称(第1课时)13.1.1轴对称(第1课时)13.1.1轴对称(第1课时)
八年级 上册13.1 轴对称 (第 1 课时)课件说明• 本节课从观察生活中的轴对称现象出发,通过生活 中平面图形的实例,抽象概括出轴对称图形的本质 特征,并结合具体的生活中的图形,类比得出两个 图形成轴对称的概念.在此基础上,通过探索成轴 对称的两个图形的对称轴与对应点所连线段之间的 关系获得了性质,并类比其过程,得到轴对称图形 的性质 . • 本节课从观察生活中的轴对称现象出发,通过生活 中平面图形的实例,抽象概括出轴对称图形的本质 特征,并结合具体的生活中的图形,类比得出两个 图形成轴对称的概念.在此基础上,通过探索成轴 对称的两个图形的对称轴与对应点所连线段之间的 关系获得了性质,并类比其过程,得到轴对称图形 的性质 . • 学习目标: 1 .了解轴对称图形和两个图形成轴对称的概念,知 道轴对称图形和两个图形成轴对称的区别与联系. 2 .探索成轴对称的两个图形的性质和轴对称图形的 性质,体会由具体到抽象认识问题的过程,感悟 类比方法在研究数学问题中的作用. 3 .了解线段垂直平分线的概念. • 学习重点: 轴对称的概念和性质. 课件说明 引言 对称现象无处不在,从自然景观到艺术作品,从建筑物到交通标志,甚至日常生活用品,都可以找到对称的例子,对称给我们带来美的感受! 引出新知探索新知 问题 1 如图,把一张纸对折,剪出一个图案(折痕处不要完全剪断),再打开这张对折的纸,就得到了美丽的窗花.观察得到的窗花,你能发现它们有什么共同的特点吗? 追问 你能举出一些轴对称图形的例子吗? 探索新知 如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直 线就是它的对称轴.这时,我们也说这个图形关于这条 直线(成轴)对称. 共同特征: 每一对图形沿着虚线折叠,左边的图形都能与右边的图形重合. 探索新知 问题 2 观察下面每对图形(如图),你能类比前面的内容概括出它们的共同特征吗? 追问 1 你能再举出一些两个图形成轴对称的例子吗? 探索新知 把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点. 两者的联系: 把成轴对称的两个图形看成一个整体,它就是一个轴对称图形.把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称. 探索新知 追...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部