----直线的斜率 一、案例背景《高中数学课程标准》指出“学生的数学学习活动不应只限于接受、记忆、模仿和练习,高中数学课程还应提倡自主探究、动手实践、合作沟通、阅读自学等学习数学的方式。这些方式有助于发挥学生的主动性,使学生的学习过程成为在老师引导下的“再制造”过程。”,“高中数学课程应该反璞归真,努力揭示数学概念、法则、结论的进展过程和本质。数学课程要讲逻辑推理,更要讲道理,通过典型例子的分析和学生自主探究活动,使学生理解数学概念、结论逐步形成的过程,体会蕴涵在其中的思想方法,追寻数学进展的历史足迹,把数学的学术形态转化为学生易于接受的教育形态。”上述精神表达了数学教学的新理念,即坚持以学生为主体,老师为主导。在这种理念下,数学的课堂教学应该是丰富多彩的学生制造性的活动。可是,却有很多学生对数学不大感兴趣,觉得数学很难学,很枯燥。我觉得其中的一个原因是:在课堂教学中,老师没有创设适当的问题情境,来激发学生的求知欲。“问题教学法”正是以问题为主线,引导学生主动探究,体验数学发现和构建的过程,完全符合新课程标准的理念。因此,“问题教学法”在高中数学新课程的教学中尤显重要。下面,我结合直线的斜率的容就新课标下高中数学问题教学法谈一些个人体会。二、案例过程(一)、创设情境,引入课题师:同学们骑自行车上坡时很吃力,这与坡的什么有关?课件:生:与坡的平缓和陡有关。师:我们分析一下坡的平缓和陡问题。先请同学们来观察下面两幅图片:课件:如图是两不同的楼梯图。问题 1:其中的楼梯有什么不同?生:楼梯的平缓和陡程度不同。问题 2:用什么量来刻画楼梯的平缓和陡呢?(提示:观察楼梯下面两个三角形)生:用高度和宽度的比值来反映。师:一般地:高度和宽度的比值就叫坡度。所以楼梯的倾斜程度是由坡度来刻画的,坡度越大,楼梯越陡。(二)、归纳探究,形成概念1、借助模型,直观感知课件:给出一个楼梯模型楼梯上面有一条直线,直线就反映坡度。〖设计意图〗从模型直观感知直线的斜率,完成直线的斜率的感性认识。问题 3:楼梯的倾斜程度用坡度来刻画,那么直线的倾斜程度用什么量来刻画呢?(对第三个问题,学生议论纷纷,部分学生不知道如何准确回答)2、通过探究,形成概念师:讨论直线的倾斜程度可以借助直角坐标系。(师生共同探究,得出直线的斜率严格的定义,板书定义。引导学生找出定义中的关键),这个比值就叫直线的斜率。(常用字母 K ...